Current status of the TAMA300 interferometer

Masaki Ando

Department of Physics, Faculty of Science, University of Tokyo.

S. Nagano^B, K. Arai^A, S. Taniguchi, Gerhard Heinzel^A, R. Takahashi^A, S. Kawamura^A, D. Tatsumi^B, S. Telada^A, A. Okutomi^B, S. Moriwaki^C, T. Kanda^E, M. Fukushima^A, T. Yamazaki^A, M. Ohashi^A, N. Mio^C, K. Kawabe, A. Araya^D, M. Musha^F, K. Tochikubo, N. Ohishi, K. Yamamoto, A. Takamori, A. Sekiya, K. Numata, S. Ohtsuka, A.Ueda^A, S. Miyoki^B, S. Sato^B, K.Ueda^F, M.-K. Fujimoto^A, K. Tsubono, K. Kuroda^B, and TAMA collaboration^{F,G}

> Department of Physics, University of Tokyo, NAO^A, ICRR^B, Department of Advanced Materials Science, University of Tokyo^C, ERI^D, Miyagi University of Education^E, UEC^F, KEK^G

> > 2nd TAMA Workshop (October 20, 1999, Tokyo, Japan)

Contents

\cdot Introduction.

 $\begin{array}{c} \times \\ \times \\ \end{array} 300 \end{array}$

• TAMA300 interferometer.

 \times

 \times

• Sensitivity of the TAMA300 interferometer.

 \times

.

 \times

• Stability of the TAMA300 interferometer.

× - 2.

 \cdot Summary and future works.

.

Introduction (1) 300

•

TAMA300

Introduction (2)

300

(**Phase I**).

\times

×10 W laser source with 10 m mode cleaner. ×Main interferometer with 300 m arm cavities. ×Without power recycling. ×Data taking and analysis.

 \times

 $\begin{array}{ccc} 3 & 10 & ^{20}.\\ (_{obs}=300 \ \mathrm{Hz}, \ \Delta _{obs}=300 \ \mathrm{Hz}) \end{array}$ Displacement noise 5 10 $^{19} \ \mathrm{m} \ \overline{\mathrm{Hz}}.\\ \mathrm{Laser \ frequency \ noise} & 1 & 10 & ^{6} \ \mathrm{Hz} \ \overline{\mathrm{Hz}}. \end{array}$

(Phase II).

 \times

$$\times \qquad 3 \qquad 10^{-21}.$$

$$(_{obs} = 300 \text{ Hz}, \Delta_{obs} = 300 \text{ Hz})$$
Displacement noise 5 10⁻²⁰ m Hz.

Phase I

300m Fabry-Perot-Michelson interferometer with 10W laser source and mode cleaner

Introduction (3)

×Improve sensitivity and stability. \times

Data analysis.

٠

TAMA300 interferometer (2)

· Injection-locked Nd:YAG laser.

 \times Output power of 10 W.

 $\times {\rm Master}$ laser

 $\times \text{LD-pumped Nd:YAG laser}$ (700 mW).

 $\times {\rm Slave}$ laser

×Fiber LD-pumped ring laser. ×Injection-locked to the master laser.

· 10-m ring cavity.

*Three mirrors — Independently suspended.
*Finesse — 1,700.
*Transmissivity — 54%.
*Transmission of modulation sidebands.

 \times MC end mirror (1kHz). \times Feed around (1 kHz 20 kHz)

TAMA300 interferometer (3)

٠

300-

9

TAMA300 interferometer (4)

×Two arm cavities — Resonate with input laser beam. ×Interference fringe — Dark at the detection port.

 \times Arm cavity common motion (+) ×Michelson fringe motion ()

. . .

×Arm cavity differential motion () Front Mirror coil-magnet actuators (differential). Laser source (MC and feed around). BS coil-magnet actuator.

TAMA300 interferometer (5)

• Alignment control

• 8 . .

×Signals are extracted from picked-off beams.
×Use the WFS scheme for each arm cavity.
×Feed back to coil-magnet actuators of each mirror.

 \times $_{\rm UGF}$ - 10 Hz.

TAMA300 interferometer (6)

TAMA300 interferometer (7)

×Sensitivity is degraded by BS orientation drift. BS NS arm QPD (Arm cavity transmissivity, Contrast.) Alignment control ×BS orientation is controlled with QPD at the end room. Alignment control ×Detect beam position of transmitted beam. ×Fed back to BS (coil-magnet actuator, PZT at suspension point). Tilt 0.3 Hz. \times UGF WE end mirror .Suspension Mirror ×Finite dynamic range for actuator (50 m). Stack is dragged by Х . L feedback (Displacement) signal ×Cancel feedback signal by the tilt of the isolation system. ×Heater is attached at the bottom of WE-end VIS. 3 mHz. \times UGF

Heater

TAMA300 interferometer (8)

Sensitivity of the TAMA300 interferometer (2)

 $(_{\rm obs} 300 , \Delta_{\rm obs} 300),$

•

 \times

٠

×Asymmetry in actuator efficiencies. ×Beam miss-centering on mirrors.

 \times

Sensitivity of the TAMA300 interferometer (3)

(with steep LPF with 10-pole Chebyshev low-pass filter.)

Sensitivity of the TAMA300 interferometer (4)

×Noise sources to be considered.

×Shot noise, Thermal noise, Seismic noise, Laser frequency noise, Laser intensity noise, control noise, Detector noise, AC line noise,

Stability of TAMA300 interferometer (1)

2(17 20).

•

٠

31 hours.

Date / Time

Stability of TAMA300 interferometer (2)

× -

.

Summary and future works

• Improve the sensitivity 10⁻¹⁹

×Reduce alignment control system noise.

 $\times {\rm Reduce}$ detection system noise and the other noises.

stable operation.

٠

.

Sensitivity of the TAMA300 interferometer

×Sensitivity is degraded coupling with ×WFS noise. ×Asymmetry in actuator efficiencies.

×Beam miss-centering on mirrors.

 \times

22