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Introduction (1)

Ñ Overview of the TAMA300 interferometer Ñ

· Features of the TAMA300 interferometer

× Sited at National Astronomical Observatory in Mitaka, Tokyo.

× Fabry-Perot-Michelson interferometer with arm length of 300m.

× Nd:YAG laser source with output power of 10 W.

× 10 m ring-type mode cleaner.

× Power recycling.
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Introduction (2)

Ñ Development steps of the TAMA300 interferometer Ñ

· First observation phase (Phase I).

× Operate almost the whole interferometer.
× 10 W laser source with 10 m mode cleaner.

× Main interferometer with 300 m arm cavities.

× Without power recycling.

× Data taking and analysis.

× Sensitivity Ñ � � 3 � 10�20.
(�obs = 300 Hz, ∆�obs = 300 Hz)

� Displacement noise � 5� 10�19 m�
�
Hz.

Laser frequency noise � 1� 10�6 Hz�
�
Hz.

�
· Improve the sensitivity (Phase II).

× Implement power recycling.
× Sensitivity Ñ � � 3 � 10�21.

(�obs = 300 Hz, ∆�obs = 300 Hz)

� Displacement noise � 5� 10�20 m�
�
Hz.
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Introduction (3)

Ñ Current status Ñ

· TAMA300 interferometer

× Operated with the Þnal conÞguration for Phase I.

× Sensitivity Ñ 7 � 10�18 m�
�

Hz.

× Stability Ñ Continuous operation over 7 hours.

�
× Improve sensitivity and stability.

× Characterization

· Data taking

× Data taking 1 (August 06) Ñ 1 � 10�16 m�
�

Hz.

× Data taking 2 (September 17 - 20) Ñ 1 � 10�17 m�
�

Hz.

�
Data analysis.
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Introduction (4)

Ñ Current sensitivity of TAMA300 Ñ

· Sensitivity Ñ 7 � 10�18 m�
�

Hz ( 2 � 10�20 1�
�

Hz)
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TAMA300 interferometer (1)

Ñ TAMA300 interferometer for Phase I Ñ

· High-power and stable laser source (10W laser and 10m MC).

· Main interferometer (300m Fabry-Perot-Michelson interferometer).
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TAMA300 interferometer (2)

Ñ Laser source Ñ

· Injection-locked Nd:YAG laser.

× Output power of 10 W.

× Master laser

× LD-pumped Nd:YAG laser (700 mW).

× Slave laser
× Fiber LD-pumped ring laser.

× Injection-locked to the master laser.

· 10-m ring cavity.

× Three mirrors — Independently suspended.

× Finesse — 1,700.

× Transmissivity — 54%.

× Transmission of modulation sidebands.

· Frequency control.

× MC end mirror (� 1kHz).

× Feed around (1 kHz�20 kHz)

· Intensity stabilization.
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TAMA300 interferometer (3)

Ñ Main interferometer with the 300-m arm cavities Ñ

· Michelson interferometer with
300-m Fabry-Perot arm cavities.

× Finesse — 516.

× Cut-off frequency — 480 Hz.

· Controlled with
the frontal modulation scheme.

× ��� signal 	 front mirrors (diff.).

× ��� signal 	 beam splitter.

× ��+ signal 	 laser and MC.

· Alignment control system.

× Wave-front sensing scheme.

× Sample small power with pick-off mirrors.

· Low-freq. drift control system.

× BS orientation control.

× ��� thermal control.
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TAMA300 interferometer (4)

Ñ Main control loops Ñ

· Operational point of the interferometer.

× Two arm cavities — Resonate with input laser beam.

× Interference fringe — Dark at the detection port.

· Three d.o.f. to be controlled.

× Arm cavity differential motion (���) 	 Front Mirror coil-magnet actuators (differential).

× Arm cavity common motion (��+) 	 Laser source (MC and feed around).

× Michelson fringe motion (���) 	 BS coil-magnet actuator.
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TAMA300 interferometer (5)

Ñ Alignment control loops Ñ

· Alignment control of the interferometer.

	 stable operation and high sensitivity.

· 8 d.o.f are controlled for the main interferometer.

× Signals are extracted from picked-off beams.

× Use the WFS scheme for each arm cavity.

× Feed back to coil-magnet actuators of each mirror.

× �UGF � 10 Hz.
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TAMA300 interferometer (6)

Ñ Performance of alignment control loops Ñ

· Without alignment control

× Large pitch motion 	 IFO goes out of lock in several minutes at best.

· With alignment control

× Well-aligned automatically.

× Stable operation over 7 hours.
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TAMA300 interferometer (7)

Ñ Low-frequency drift control loops Ñ

· BS orientation control.

× Sensitivity is degraded by BS orientation drift.

(Arm cavity transmissivity, Contrast.)

�
× BS orientation is controlled with QPD at the end room.

× Detect beam position of transmitted beam.

× Fed back to BS

(coil-magnet actuator, PZT at suspension point).

× �UGF � 0.3 Hz.

· ��� thermal control.

× Finite dynamic range for ��� actuator (� 50�m ).

× ��� is dragged by ���.
�

× Cancel ��� feedback signal by the tilt of the isolation system.

× Heater is attached at the bottom of WE-end VIS.

× �UGF � 3 mHz.
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TAMA300 interferometer (8)

Ñ BS orientation control loops Ñ

· BS orientation ßuctuation is suppressed by the control loop.
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Sensitivity of the TAMA300 interferometer (1)

Ñ Displacement noise level Ñ

· Displacement noise level Ñ 7 � 10�18 m�
�

Hz. (700� 900 Hz).

	 14 times worse than the goal sensitivity for Phase I.
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Displacement noise

Beam
miss-centering Actuator
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Sensitivity of the TAMA300 interferometer (2)

Ñ Noise estimation Ñ

· At the observation band (�obs = 300 Hz, ��obs = 300 Hz),

Alignment control noise is dominant.

× Sensitivity is degraded coupling with
× Asymmetry in actuator efficiencies.

× Beam miss-centering on mirrors.

�
× New alignment control Þlters.

× Beam-centering ad�ustment.

× Improvement of WFS noise level.
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Sensitivity of the TAMA300 interferometer (3)

Ñ Alignment control noise Ñ

· Sensitivity will be improved

with new alignment control Þlters.

(with steep LPF with 10-pole Chebyshev low-pass filter.)
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Sensitivity of the TAMA300 interferometer (4)

Ñ Noise sources Ñ

· Contribution of several noise sources are estimated.

× Noise sources to be considered.

× Shot noise, Thermal noise, Seismic noise, Laser frequency noise,

Laser intensity noise, ��� control noise, Detector noise, AC line noise, ....
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Stability of TAMA300 interferometer (1)

Ñ Long term operation Ñ

· Data taking 2 (September 17 � 20).

· Total operation time Ñ about 31 hours.
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Stability of TAMA300 interferometer (2)

Ñ Stability Ñ

· The interferometer is kept lock stably.

× Total operation time Ñ about 31 hours in 3 nights.

× Longest locking time Ñ about 7 hours 43 min..

· Power ßuctuation.

× Arm cavity transmissivity Ñ ßuctuation less than 2�.

× Contrast Ñ ßuctuation between 9�� - 97�.
× Arm cavity alignment control.

× BS orientation control.

× Mode cleaner Ñ ßuctuation about 10�

× No alignment control at this time.

· Sensitivity in long term operation

× Burst-like noise appeared occasionally.
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Summary and future works

· The main interferometer is

operated with the Þnal conÞguration for Phase I.

× Sensitivity � 7 � 10�18 m�
�

Hz.

× The interferometer was operated over 7 hours continuously.

�
· Improve the sensitivity 	 � � 10�19 m�

�
Hz.

× Reduce alignment control system noise.

× Reduce detection system noise and the other noises.

· Characterization.

· �ealize stable operation.

�
· Improve stability of sensitivity.
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Sensitivity of the TAMA300 interferometer

Ñ Alignment control noise Ñ

· Alignment control noise.

× Sensitivity is degraded coupling with

× WFS noise.

× Asymmetry in actuator efficiencies.

× Beam miss-centering on mirrors.

�
× New alignment control Þlters.

× Beam-centering ad�ustment.

× Improvement of WFS noise level.
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