New signal extraction scheme with harmonic demodulation for power-recycled Fabry-Perot Michelson interferometers

Koji Arai, Masaki Ando^A, Shigenori Moriwaki^B,

Keita Kawabe^A, and Kimio Tsubono^A

National Astronomical Observatory

^ADepartment of Physics, University of Tokyo

^BDepartment of Advanced Materials Science, University of Tokyo

Introduction

- New scheme to extract control signals for power-recycled Fabry-Perot Michelson
 - ~ Based on frontal modulation
 - ~ Demodulation at the 3rd harmonic frequency (3fm)
 - ~ Control signals for RM and BS
- Principle
 - ~ Beating of 1st and 2nd order modulation sidebands
- Advantages
 - ~ Insensitivity to arm cavity motions
 - ~ Robust extraction: amplitudes and signs of the signals
 - -- less dependent on the optical parameters
- Experimental tests on the 3m suspended prototype

Harmonic Demodulation Scheme

Demodulating reflected light at the 3rd harmonic frequency

Problems of conventional scheme

- Difficulty in separating δl_+ from δL_+
 - ~ because of the phase enhancement by the arm cavities
 - ~ signal ports are ~100 times more sensitive to δL + than to δl +
- The δl_+ and δl_- signals can disappear

The δl + signal vanishes when G0 = G1.

The δl - signal vanishes when G0 is maximized.

Recycling gain

Go: for the carrier

G1: for the 1st order sidebands

Principle

● Photocurrent at the 3fm ~ beating of SB2 and SB-1

- SB2s are not resonant with the IFO
 - → Effect of SB2

Emphasized at the reflection port

→ The amplitudes and the signs

Less dependent on the couplings of CA and SB1

Advantages

- Easy to implement
 - ~ no additional modulation
- Contribution of δL_+ is reduced
 - ~ in comparison with the fm demodulation
- Robust extraction of δl_+ and δl_-

Amplitudes of the signals

~ less dependent on the optical parameters

Signs of the signals

- ~ do not depend on the optical parameters
- ~ never change during lock acquisition
- Operating the IFO without the pick-off mirror
 - ~ the δL + signal is extracted at the reflection port

Experimental tests on the 3m prototype

3m prototype power-recycled interferometer

at University of Tokyo

Features

Suspended Mirrors
Double pendulums
Enclosed in chambers
Recycling Gain

 ~ 3.8 (R_R=0.63)

 ~ 5.4 (R_R=0.81)

Light source:

Nd:YAG

1064 nm, 42 mW

Arm length:

2.95 m

Arm finesse:

~240

Harmonic Demodulation for the 3m

Frequency of the local oscs. is tripled by tuned amplifiers with nonlinearly driven transistors

Experimental achievements

- Automatic lock / stable operation
- Reduction of dL+ contribution
 - ~ Sensitivity to dL+ --- 20 times reduced.
- Robust extraction of dl+ and dl-
 - ~ Modest optical gain variations during lock --- confirmed.
 - ~ Sign of the dl- signal --- never been flipped.
- Operation without pick-off inside the recycling caivty
 - ~ Stable operation with recycling gain of 5.4

Locking acquisition

Reduction of dL+ contribution

Sensitivity to dL+ has been 20 times improved
 by the 3fm scheme

Robust extraction of dl+ and dl-

Sensitivity variation during lock acquisition

Robust extraction of dl+ and dl-

• Sign flipping of δl - during lock / by change in optical param.

Tests by changing the transmissivity of pick-off mirror inside of the recycling caivty.

The sign of δl - by the 3fm demod. never changes

IFO operation without pick-off

Stable operation of the 3m without pick-off mirror

IFO operation without pick-off

Stable operation of the 3m without pick-off mirror

Recycling Gain for the carrier $G_0 = 5.4 \pm 0.05$ (RR = 0.81)
(almost critical coupled)

IFO operation without pick-off

Noise caused by the pick-off was eliminated

Further reduction of dL+

Erase the 3rd order sidebands at the reflection port!!!

- by adjusting the opt. param.
 - ~ The best separation ratio (dL + / dl +) of about 0.5

by applying weak 3fm modulation

Discussion

 Shot-noise level of the 3fm signals are usually worse than those of the signals with the conventional scheme.

(measured with modulation depth m of 0.7)

Summary

- Harmonic demod. for extraction of δl + signals
 - ~ Demodulation at the 3rd harmonic frequency
- Experimental tests on the 3m prototype
 - ~ Stable lock has been achived
 - ~ Inherent insensitivity to δL + (20 times improved)
 - ~ Robustness of the signal amplitudes during lock
 - ~ Sign of δl does not depend on the optical parameters.
 - ~ Stable operation without pick-off mirror (rec. gain of 5.4)