Current efforts on the TAMA300 detector

National Astronomical Observatory of Japan

Koji Arai
on behalf of the TAMA collaboration

Amaldi6 meeting 2005/6/22 Okinawa

TAMA300: Interferometer GW detector

• TAMA300:

A 300-m Power-recycled Fabry-Perot Michelson Interferometer Site: National Astronomical Observatory of Japan (Mitaka, Tokyo)

Operation of TAMA300

Fabry-Perot Michelson: 1999~2001

Power Recycling: 2001~Present

- This talk
 - Brief introduction of the control schemes and the loock acquisition
 - Current effort to improve the sensitivity, being focused on the low frequency region (DC-200Hz) and the mid frequency region (200Hz-2kHz)

Optical configuration of TAMA300

Optical configuration of TAMA300

Lenath sensina and control

- Recycled Fabry-Perot Michelson Interferometer
 4 longitudinal d.o.f. to be controlled
 - ~ The optical cavities and the Michelson interferometer must be on the operating point

Based on the PDH technique and Schunupp modulation

Based on the PDH technique and Schunupp modulation

Based on the PDH technique and Schunupp modulation

Based on the PDH technique and Schunupp modulation

demod.

Lock acquisition

- Typically the lock is acquired within minutes
 - ~ need good pre-alignment

Alignment sensing and control

- Wave front sensing technique
 - mode cleaner cavity

Lock acquisition

 Alignment control for the arm, UGF: 5~10Hz, for the RM, UGF: ~10mHz

Length sensing and control ~ for low noise mode

Common/differential separated control

Sensitivity history

No apparent improvement since 2003/11~ (S3)

Last year:

Worked with Recycled Michelson

Restoration of the full interferometer:

from 2004 autumn

Approached to the previous sensitivity level

in the end of March

Noise budget

Current understanding about TAMA sensitivity

Low frequency

```
Seismic noise (DC~20Hz)

Noise from alignment servos (20Hz~200Hz)
```

Middle frequency

Not known well (200Hz~2kHz)

Scattering noise

Electronics noise

High frequency noise

~ shot noise (2kHz~50kHz)

Development of SAS

Collaboration with

Caltech and Universita' di Pisa

Installation

'05 summer:

1 SAS for one of the end mass

'05 autumn/winter:

The other 3 SASs

Target

To improve seismic-related noise direct or indirect noise couplings

Stabilize of the IFO

To ease lock acquisition

Development of SAS

Collaboration with

Caltech and Universita' di Pisa

Installation

'05 summer:

1 SAS for one of the end mass

'05 autumn/winter:

The other 3 SASs

Target

To improve seismic-related noise direct or indirect noise couplings

Stabilize of the IFO

To ease lock acquisition

Filter Zero

Inverted Pendulum

Horizontal isolation

Resonant frequency:

Currently 70-80mHz
To be 30mHz

MGAS

Vertical isolation

Resonant frequency:

To be $0.4 \sim 0.5$ Hz

Filter Zero

Test@3mFP

Displacement

 $10^{-8} \text{ m/Hz}^{1/2}$

->

 $10^{-11} \text{ m/Hz}^{1/2}$

RMS Velocity

 $3.7 \mu m/s$

->

 $0.3 \mu m/s$

Expected: lower seismic/alignment noise, easier lock acquisition

Noise between 100Hz and 1000Hz

- Limiting noise source ~ not known
- Scattered light noise

Michelson part of TAMA300: complicated

Noise between 100Hz and 1000Hz

- Limiting noise source ~ not known
- Scattered light noise

Michelson part of TAMA300: complicated

Scattered light noise

Beam dump with ND filters

Combining commercial ND filters in a diamond shape

- not blewster angle reflection but larger apperture (40mm with 2inch ND)
- ~ vacuum compatible

Recycled Michelson experiment

Displacement noise: improved with the simplified RMI

Recycled Michelson experiment

- Stray beams cared by the ND beam dumps The noise level was kept at the best

PD vacuum chamber at the dark port

To suppress the vibration of scattering objects

Avoid acoustic exicitation
Remove an effect of dusts
Vibration isolation by the stack
Separated from the main vacuum
Plan to put PDs in vacuum

Electronic noise

• dL- servo chain

Summary

- Interferometric GW detector TAMA300
- Efforts focused on noise hunting
- Low frequency (DC-200Hz)

```
Seismic noise (DC~20Hz)
```

Noise from alignment servos (20Hz~200Hz)

SAS is going to provide the improvement Installation shortly

Middle frequency (200-2kHz)

Essentially unknown

Scattering noises investigated with RMI

learned how to deal with them / PDs in vacuum

Electronics noise

redesignation of the gain distribution