Current efforts on the TAMA300 detector National Astronomical Observatory of Japan Koji Arai on behalf of the TAMA collaboration Amaldi6 meeting 2005/6/22 Okinawa #### TAMA300: Interferometer GW detector • TAMA300: A 300-m Power-recycled Fabry-Perot Michelson Interferometer Site: National Astronomical Observatory of Japan (Mitaka, Tokyo) Operation of TAMA300 Fabry-Perot Michelson: 1999~2001 Power Recycling: 2001~Present - This talk - Brief introduction of the control schemes and the loock acquisition - Current effort to improve the sensitivity, being focused on the low frequency region (DC-200Hz) and the mid frequency region (200Hz-2kHz) ## Optical configuration of TAMA300 ## Optical configuration of TAMA300 ### Lenath sensina and control - Recycled Fabry-Perot Michelson Interferometer 4 longitudinal d.o.f. to be controlled - ~ The optical cavities and the Michelson interferometer must be on the operating point Based on the PDH technique and Schunupp modulation demod. #### Lock acquisition - Typically the lock is acquired within minutes - ~ need good pre-alignment ### Alignment sensing and control - Wave front sensing technique - mode cleaner cavity #### Lock acquisition Alignment control for the arm, UGF: 5~10Hz, for the RM, UGF: ~10mHz #### Length sensing and control ~ for low noise mode Common/differential separated control ### Sensitivity history No apparent improvement since 2003/11~ (S3) #### Last year: Worked with Recycled Michelson Restoration of the full interferometer: from 2004 autumn Approached to the previous sensitivity level in the end of March #### Noise budget ## Current understanding about TAMA sensitivity #### Low frequency ``` Seismic noise (DC~20Hz) Noise from alignment servos (20Hz~200Hz) ``` ### Middle frequency Not known well (200Hz~2kHz) Scattering noise **Electronics noise** ### High frequency noise ~ shot noise (2kHz~50kHz) Development of SAS Collaboration with Caltech and Universita' di Pisa Installation '05 summer: 1 SAS for one of the end mass '05 autumn/winter: The other 3 SASs Target To improve seismic-related noise direct or indirect noise couplings Stabilize of the IFO To ease lock acquisition Development of SAS Collaboration with Caltech and Universita' di Pisa Installation '05 summer: 1 SAS for one of the end mass '05 autumn/winter: The other 3 SASs Target To improve seismic-related noise direct or indirect noise couplings Stabilize of the IFO To ease lock acquisition Filter Zero Inverted Pendulum Horizontal isolation Resonant frequency: Currently 70-80mHz To be 30mHz MGAS Vertical isolation Resonant frequency: To be $0.4 \sim 0.5$ Hz Filter Zero #### Test@3mFP #### Displacement $10^{-8} \text{ m/Hz}^{1/2}$ -> $10^{-11} \text{ m/Hz}^{1/2}$ #### **RMS Velocity** $3.7 \mu m/s$ -> $0.3 \mu m/s$ Expected: lower seismic/alignment noise, easier lock acquisition ## Noise between 100Hz and 1000Hz - Limiting noise source ~ not known - Scattered light noise Michelson part of TAMA300: complicated ## Noise between 100Hz and 1000Hz - Limiting noise source ~ not known - Scattered light noise Michelson part of TAMA300: complicated ## Scattered light noise Beam dump with ND filters #### Combining commercial ND filters in a diamond shape - not blewster angle reflection but larger apperture (40mm with 2inch ND) - ~ vacuum compatible # Recycled Michelson experiment Displacement noise: improved with the simplified RMI # Recycled Michelson experiment - Stray beams cared by the ND beam dumps The noise level was kept at the best ### PD vacuum chamber at the dark port ## To suppress the vibration of scattering objects Avoid acoustic exicitation Remove an effect of dusts Vibration isolation by the stack Separated from the main vacuum Plan to put PDs in vacuum #### Electronic noise #### • dL- servo chain ## Summary - Interferometric GW detector TAMA300 - Efforts focused on noise hunting - Low frequency (DC-200Hz) ``` Seismic noise (DC~20Hz) ``` Noise from alignment servos (20Hz~200Hz) SAS is going to provide the improvement Installation shortly Middle frequency (200-2kHz) Essentially unknown Scattering noises investigated with RMI learned how to deal with them / PDs in vacuum Electronics noise redesignation of the gain distribution