Sensing and Control of an Interferometer Gravitational Wave Detector TAMA300

Koji Arai on behalf of the TAMA project

National Astronomical Observatory of Japan

TAMA300: Interferometer GW detector

• TAMA300:

A 300-m Power-recycled Fabry-Perot Michelson Interferometer Site: National Astronomical Observatory of Japan (Mitaka, Tokyo)

Operation of TAMA300

Fabry-Perot Michelson: 1999~2001

Power Recycling: 2001~Present

This talk

Length sensing and control Lock acquisition Alignment control

Optical configuration of TAMA300

Optical configuration of TAMA300

Length sensing and control

- Recycled Fabry-Perot Michelson Interferometer
 - 4 longitudinal d.o.f. to be controlled
 - ~ The optical cavities and the Michelson interferometer must be on the operating point

- Based on the PDH technique and Schunupp modulation
 - single phase modulation at 15MHz

- Based on the PDH technique and Schunupp modulation
 - single phase modulation at 15MHz

Based on the PDH technique and Schunupp modulation

Based on the PDH technique and Schunupp modulation

Lock acquisition

3rd harmonic demodulation

- Photocurrent at the 3fm
 - ~ beating of SB2 and SB-1

K. Arai, et al, Phys. Lett. A 273 (2000) 15 K. Arai, et al, Class. Quantum Grav. 19 (2002) 1843

Effect of SB2s are emphasized at the reflection port

Signal with fm demod. and 3fm demod. ~ order of m and m³

SB2s are not resonant

=> reflectance is ~1

CA, SB1s, and SB3s are resonant => reflectance can be low

3rd harmonic demodulation

- Merit of 3fm demod
 - ~ robust extraction of δl_+ and δl_-
 - Contribution of carrier audio-sidebands (~ δL_+)
 - => Reduced

Amplitudes of the δl_+ and δl_- signals

- => Less dependent on the couplings of CA and SB1
- => Less variation during lock acquisition

Signs of the signals

- => Independent from the optical parameters
- => Invariant during lock acquisition

Extracted signal (calculation)

Well-diagnalized signals

Port	Demod	Phase	L-	L+	 -	l+
Dark	fm	Q	1	3.0e-4	3.0e-3	1.0e-6
Bright	fm	I	1.5e-4		6.1e-6	8.4e-5
Bright	3fm	Q	1.0e-2	2.3e-2	1	3.6e-2
Bright	fm	Q	1.5e-2	6.2e-1		1.6e-3
Bright	3fm	I	1.5e-4	6.5e-2	1.2e-3	

Shot noise limit

Port	Demod	Phase	Shotnoise level (m/Hz ^{1/2})		
Dark	fm	Q	L-	1.2 x 10 ⁻¹⁹ =	=4.0 x 10 ⁻²² 1/Hz ^{-1/2}
Pick-off	fm	I	L+	1.6 x 10 ⁻¹⁹ =	=1.5 x 10 ⁻⁷ Hz/Hz ^{-1/2}
Bright	3fm	Q	l-	1.4 x 10 ⁻¹⁴	for lock
Bright	fm	Q	l-	2.0 x 10 ⁻¹⁶	for operation
Bright	3fm	I	l+	2.8 x 10 ⁻¹⁵	

Gain variation / Sign flip (Recycling1)

No sign flip and less gain changes with 3fm signals

~ no need of adaptive servo system (variable gain adj., dynamic sign change)

Based on the PDH technique and Schunupp modulation

Mixing of arm Pound-Drever-Hall signals

- Power Recycling
- ~ Arm length signals are mixed Power recycling gain of 4.5

$$\begin{pmatrix} \mathbf{Vpo1} \\ \mathbf{Vpo2} \end{pmatrix} = \begin{pmatrix} \mathbf{1} & \mathbf{0.5} \\ \mathbf{0.5} & \mathbf{1} \end{pmatrix} \begin{pmatrix} \mathbf{dL1} \\ \mathbf{dL2} \end{pmatrix}$$

~ still enough independent for lock acquisition

~ would be a problem with more recycling gain G=10 => mixing of 0.85

Lock acquisition

- Typically the lock is acquired within minutes
 - ~ with good alignment

Alignment sensing and control

- Wave front sensing technique
 - mode cleaner cavity

Lock acquisition

 Alignment control for the arm, UGF: 5~10Hz, for the RM, UGF: ~10mHz

Length sensing and control ~ for low noise mode

Common/differential separated control

Summary

- Length/Alignment sensing for TAMA300
 - Based on the PDH technique and the Schnupp modulation
 - Key features for lock acquisition:

3fm demodulation for dl+ and dl-

PO signals for the arms

- Alignment control

for the MC, the arms and the recycling mirror

- Switching to low noise control signals