Noise coupling due to scattered light from output optics

Koji Arai

National Astronomical Observatory of Japan (TAMA Collaboration)

Contents of the talk

- Brief introduction of simulation activities in TAMA/LCGT collaborations
- Scattered light noise
 Motivation

Principle of the noise

Approach used in this study

Simulation and interpretation of the result

Michelson/Recycled MI/Recyceld FPMI

Discussion/Conclusion

Simulation activities in TAMA/LCGT

- No comprehensive work to construct our own simulation environment / tool
- As users of the simulation softwares

```
E2E: (ICRR - Hayakawa, et al, with LIGO E2E team)
   Modeling of CLIO (100-m cryogenic prototype in Kamioka)
   h(t) injection module
```

Finesse:

(NAOJ - Kawamura, et al Lock acquisition study for Caltech 40m with LIGO 40m team) Sensing design for an RSE interferometer (NAOJ - Kokeyama, et al) Scattered light noise estimation (NAOJ - Arai, et al)

LISO:

Linear circuit simulations (NAOJ, U-Tokyo. etc)

 Analysis related simulations Software signal injection of galactic GW events Crosstalk study of two co-located interferometer

(Osaka City Univ - Kanda, et al)

Scattered light ~ introduction

- Demand of simulations from the site
 - **Commissioning work**
 - > Various kind of problems day by day
 - > Always confused by the complicated "real world"

To grasp what is happening in the real detector

- > Even a simple model is often sufficient

 if it reflects the physics we want.
- > No need to be too exact
 - --- actual values will be obtained from experiments

Feedback to experiments

- > Suggestions to the experiment
- > Suggestions of experimental methods

Scattered light ~ motivation

- Scattered light noise
 - A) Scattered light in the beam tube
 - B) Scattered light at the optical ports
 - A) Scattered light in the beam tube
 - > For the design of the long vacuum tubes and the buffles

> Experiment in TAMA

Excitation of a tube resonance: 5.6um@ 776.5Hz => 1x 10^{-17} m in the sensitivity i.e. Seismic motion $dx = \frac{1$ x $10^{-7}/f^2$ m/sqrtHz => $\sim \frac{2}{2}$ x $\frac{10^{-19}/f^2}$ m/sqrtHz

=> Negligible

PRD, Vol.70, 062003

R. Takahashi, K. Arai, S. Kawamura, and M. R. Smith

Scattered light ~ motivation

B) Scattered light at the optical ports

Fact: touching of the output optics

=> mechanical peaks in the sensitivity

e.g.

- > Tapping of the dark port optics
- => huge noise
- > Bright port
- => moderate noise

Expect some fraction of the noise is owing to the scattered light Q. Which optical port is dangerous? How much?

- > Tapping every optics
- > More systematic estimation?

Scattered light ~ principle

Coupling of scattered light to the output signal
 GW detector = optical phase sensor

Electric field of the main beam $E=E_0 e^{i \Omega t}$

Scattered light recombined to the main beam

Motion of the scattering body

=> perturbation of the optical phase

=> Appear in the output signal

Scattered light ~ back scattering

- Only back scattering is considered
 In order to couple to the output signal
 - => The scattered light should be spatially matched

=> Only consideration of TEMoo is enough

Scattered light ~ factors

Factors to determine the amount of the noise

Interferometer

- 1. Amount of the light power arrives on the scattering body.
- 2. Efficiency of effective back scattering
- 3. Sensitivity of the signal to the scattering
- 4. Amount of the scattering body's motion

 P_{out}

 η_{scat}

 α

 δx_{scat}

Scattered light ~ factors

Factors to determine the amount of the noise

Interferometer

1. Amount of the light power arrives

on the scattering body. => Easy to simulate

- 2. Efficiency of effective back scattering => Experiment
- 3. Sensitivity of the signal to the scattering => Easy to simulate
- 4. Amount of the scattering body's motion => **Experiment**

Simulation ~ Using Finesse

• "Finesse" is selected for the tool

Reason: It looked the easiest tool for the purpose

Any kind of length sensing tool does fit

Use Finesse at the most basic level

Modulation sideband: up to 1st order

Spatial mode: only TEM₀₀

Frequency range: only at DC

Based on the TAMA300 parameters
 Michelson (MI) / Recycled Michelson (RMI) model

=> To understand nature of the scattered light noise

Recycled Fabry-Perot Michelson (RFPMI) model

=> To acquire the applicable knowledge to TAMA300

RMI:

The carrier is resonant

The sidebands are not resonant

Placing scattering bodies with effective reflectivity of 1ppm

Pickoff mirrors (R=10⁻³) are inserted at several places

~ avoiding to disturb the internal condition

Sweep the position of each scattering body

=> Look at the dark port signal

Simulation ~ how to evaluate the result

Effect of the motion of the scattering source

Example: noise by the motion of the mirror behind the arm

> Small amplitude motion

- $\delta x_{\text{max}} = (4 \,\pi\,\text{A} / \lambda) \,\delta x_{\text{scat}}$
- > Large amplitude motion

$$dx = A$$
 at $f = 2 v_{\text{scat}} / \lambda$ (fringe frequency)

> Note: Noise amplitude A is proportional

to the "amplitude" of the scattered light

$$R_{\text{scat}} = 1 \text{ppm} \implies A$$

 $R_{\text{scat}} = 100 \text{ppm} \implies A' = 10 A$

Simulation ~ Carrier/sideband decomposition

- Scattering source ~ three kinds of "mirrors"
 - > Separating the contribution of the carrier and the modulation sidebands

Mirror: CA reflected SB reflected SB resonant FP: CA reflected SB absorbed CA resonant FP: CA absorbed SB reflected

(reflection 99.7%, absorption ~100%)

Simulation method summary

Sweep the position of each scattering source

Scattering source at: Arm trans., BS AR coat, Dark, Bright

Detector output: Sin wave (amplitude A)

 $=> A = (P_{\text{out}})^{\varepsilon} \alpha \eta_{\text{scat}}$ for $\eta_{\text{scat}} = 1 \text{ ppm}$

Decompose the contribution of CA/SB

Ordinary mirror: Carrier + Sidebands

SB resonant FP: only Carrier

CA resonant FP: only Sidebands

Inject imperfections of the interferometer

Michelson offset: $dx = 10^{-12} \text{ m} \sim 10^{-10} \text{ m}$

Reflectivity mismatch of the arm mirrors:

 $dR = 100 \text{ ppm} \sim 10000 \text{ ppm}$

Note: Macro- and microscopic deviations of the recycling cavity hardly effect the results

MI/RMI model ~ DC power

RMI case:

P0: carrier power

P1: sideband power

Power consumption:

94% is reflected to the bright port

60mWx2 (3%x2) transmitted from the arms

MI case: Change RM with R=0

MI model ~ Result

Arm trans. / BS AR noise level: not affected by the deviations Carrier added to only one of the arm => becomes the signal directly $A = 9.0 \times 10^{-11} P_{out} [m]$ (for 1ppm scattering)

Bright/Dark case: depends on how much the imperfection is Ideal case: no noise <= No carrier at dark, perfect common mode rejection

MI model ~ Result

Separate the contrib. of CA and SB

No matter what the origin of the leakage carrier is

~ Noise coupling is determined by sqrt of contrast defect (= by the leakage carrier field at the dark)

MI model ~ Interpretation

 Noise coupling is determined by the leakage carrier at the dark

Leakage carrier field $\sqrt{P_{ca@dark}}$

Carrier scattering at the dark port:

All of the injected carrier from the dark port becomes the noise => Noise coupling is proportional to $\sqrt{P_{ca@dark}}$

Carrier scattering at the bright port:

How much the carrier does leak to the dark port => proportional to $\sqrt{P_{ca@dark}}$

Sideband scattering at the dark port/the bright port:

Some amount of the scattered sidebands appears at the dark port

- => Couples with the leakage carrier
- => Proportional to $\sqrt{P_{ca@dark}}$

MI/RMI model ~ DC power

RMI case:

P0: carrier power

P1: sideband power

Power consumption:

94% is reflected to the bright port

60mWx2 (3%x2) transmitted from the arms

MI case: Change RM with R=0

MI/RMI model ~ RMI Result

Power recycling does not change the situation
 Power recycling increases

the scattered light and the signal at the same rate

	MI (unit: m)	RMI (unit: m)
Arm Trans	1.02×10^{-12}	1.02×10^{-12}
BS AR	1.26×10^{-14}	1.26×10^{-14}
CA scat @ dark	$1.16 \times 10^{-10} \sqrt{(1-C)}$	$1.20 \times 10^{-10} \sqrt{(1-C)}$
SB scat @ dark	$1.07 \times 10^{-10} \sqrt{(1-C)}$	$1.14 \times 10^{-10} \sqrt{(1-C)}$
CA scat @ bright	$1.16 \times 10^{-10} \sqrt{(1-C)}$	$1.16 \times 10^{-10} \sqrt{(1-C)}$
SB scat @ bright	$2.98 \times 10^{-11} \sqrt{(1-C)}$	$3.39 \times 10^{-11} \sqrt{(1-C)}$

MI/RMI model ~ Result Summary

- Asymmetric scattered light
 Constant noise coupling
 - ~ Independent from the interferometer condition $A = 9.0 \times 10^{-11} \text{ Pout } [m]$ (for 1ppm scattering)
- Scattering at the dark port and the bright port
 Dependent on the contrast defect

```
A ~ 1 x 10^{-10} \sqrt{(1-C)} [m] (for 1ppm scattering)
```

```
c.f. Bright port ~ Carrier of 2W => Same order contribution

Dark port ~ Carrier of ~0W
```

 Power recycling does not change the scattered light noise level

RFPMI model ~ DC light level

RFPMI model ~ Result

 Even with the FP arms the noise coupling is understood as the Michelson case
 by including the signal enhancement by the FP arm (factor of N_{FP}=322)

	MI (unit: m)	RFPMI (unit: m)
FP Arm Trans BS AR (Arm PO)	9.0x10 ⁻¹¹ Pout	4.23×10^{-15} 9.0×10^{-11} Pout / G0 / NFP
CA scat @ dark SB scat @ dark	1.16x10 ⁻¹⁰ $\sqrt{(1-C)}$ 1.07x10 ⁻¹⁰ $\sqrt{(1-C)}$	1.11x10 ⁻¹⁰ $\sqrt{(1-C)}$ 0.89x10 ⁻¹⁰ $\sqrt{(1-C)}$
CA scat @ bright SB scat @ bright	1.16x10 ⁻¹⁰ $\sqrt{(1-C)}$ 2.98x10 ⁻¹¹ $\sqrt{(1-C)}$	$0.91 \times 10^{-10} \sqrt{(1-C)}$ $2.78 \times 10^{-11} \sqrt{(1-C)}$

This means:

Scattered light noise level with MI or RMI will appear in the RFPMI sensitivity by a factor of 1/N_{FP}

Discussion

• Calculation shows:

Noise from the dark port vs Noise from the bright port

=> Comparable

Presence of higher order modes

=> Higher order modes increase the scattered light couples to the main beam

The noise from bright port is not affected by the higher order modes

=> It may be possible to estimate the imperfection level of the interferometer using the bright port

Conclusion

- Single mode simulation for scattered light noise MI/RMI/RFPMI cases are essentially the same
 - => Considering:
 Recycling gain & Signal enhancement by the FP arm

Asymmetric scattered light has the constant contrib.

- => Independent from the interferometer condition
- => Dependent how much power appear at the optical port

Dark port and bright port

=> Dependent on the contrast defect

Presence of higher order modes

=> Increase the noise from the scattering at the dark port

Experimental investigation

- Factors to determine the amount of the noise
 - 1. Amount of the light power arrives on the scattering body.
 - => included in the calculation
 - 2. Efficiency of effective back scattering
 - 3. Sensitivity of the signal to the scattering => included in the calculation
 - 4. Amount of the scattering body's motion
 - => vibration measurement with an accelerometer

Actuation of the optics

- a) with a small amplitude
- b) with a large amplitude

RMI displacement (2004/2/18)

