レーザー干渉計型重力波検出器TAMA300の パワーリサイクリング XV(変調・復調系雑音)

国立天文台、東大天文^A、東大理^B、東大宇宙線研^C、東大新領域^D、 阪市大理^E、電通大^F、情通機^G、The TAMA Collaboration

佐藤 修一、新井 宏二、高橋 竜太郎、阿久津 智忠^A 、中川 憲保^c、辰巳 大輔、 常定 芳基、福嶋 美津広、山崎 利孝、長野 重夫^G、安東 正樹^B、森脇 成典^D、 武者 満^F、神田 伸行^E、三尾 典克^D、川村 静児、藤本 眞克、坪野 公夫^B、 大橋 正健^c、黒田 和明^c、他 The TAMA Collaboration

Introduction

- ●TAMA300の感度向上実験とアプローチ
- ●変調・復調系雑音
- ≥目的
- ●雑音の発現メカニズム
 - ●雑音の分類
 - ●伝達函数の計算
- 干渉計雑音への寄与の推定
 RF発振器の位相雑音
 RF発振器の振幅雑音

●まとめ

Introduction

■TAMA300の感度向上実験におけるアプローチ

- ▶散乱光を起源として雑音になるもの
- ▶光電場の雑音サイドバンドを起源とし、変調・復調を通して雑音となるもの
- ▶制御ループ間のカップリングを介して雑音となるもの
- ●その他
- ●変調・復調系を介する雑音
 - ●雑音源
 - ●位相変調用RF信号発振器の位相雑音・振幅雑音
 - ●レーザーの周波数雑音・強度雑音
 - ■複数の光学系(MC、干渉計等)を透過
 - ▶復調した後に雑音となる

≥目的

- ◆発現メカニズムの理解(非対称性・不完全性とのカップリング)
- ●干渉計設計へのフィードバック
 - ●雑音源(信号発振器・レーザー)への仕様要求
 - ●伝達経路を特徴付けるパラメータ(非対称性・不完全性)への要求
 - ●光学設計(アシンメトリ等)・制御設計(制御帯域等)への要求

雑音の発現メカニズム(1) - 雑音の分類-

雑音の発現メカニズム(2) - 伝達函数の計算-

●伝達函数計算のアイデア

- ●8種類の雑音を基底とする
- 8雑音状態が光学系X透過
 - ▶互いが互いに散乱される
- ●散乱行列を計算すればよい
- ●メリット

▶複数の光学系を経由した多重散乱の効果を簡単に計算できる

雑音の発現メカニズム(3) - 伝達函数の計算-

◆MCの場合

- ●鏡の反射率はスペック値
- ●不完全性
 - ●理想的な動作点と制御点のずれ(dL)
 - 変調周波数とMC-FSRのずれ(dΩ)

 $dL(a(f) + b(f)d\Omega^2)$

									_	10							
			雑			_2											
fn Pl	M in PM	fn AM	in AM	pn PM	an PM	Ipn AM	lan AM	散乱先	de	10 ⁻⁵							
1	х	Х	Х	0	0	0	0	fn PM	ituo	-4							
х	1	X	Х	0	0	0	0	in PM	ilqı	10 -			/				١
х	x	1	Х	0	0	0	0	fn AM	Am	-5							
х	x	X	1	0	0	0	0	in AM		10 ⁻⁵							
х	x	X	Х	1	x	x	x	pn PM		<i>.</i>		1					
х	x	x	x	x	1	x	x	an PM		10⁻⁶	<u> </u>						L
X	x	X	X	X	Х	1	X	pn AM		1	0 ⁻¹	1	0 ¹	1	0 ³	1	ď
X	x	X	X	X	X	X	1	an AM			Frequency [Hz]						

. .-2 ...

雑音の発現メカニズム(3) - 伝達函数の計算-

◆MCの場合

- ●鏡の反射率はスペック値
- ●不完全性
 - ●理想的な動作点と制御点のずれ(dL)
 - 変調周波数とMC-FSRのずれ(dΩ)

 $dL(a(f) + b(f)d\Omega^2)$

雑音源												
fn PM	in PM	fn AM	in AM pn PM an PM pn AM				an AM	散乱先				
1	Х	X	Х	0	0	0	0	fn PM				
Х	1	Х	Х	0	0	0	0	in PM				
Х	x	1	Х	0	0	0	0	fn AM				
Х	x	x	1	0	0	0	0	in AM				
Х	Х	Х	Х	1	Х	Х	Х	pn PM				
Х	x	x	Х	x	1	x	х	an PM				
Х	X	X	Х	X	Х	1	Х	pn AM				
X	x	x	x	x	x	x	1	an AM				

TAMA300

雑音の発現メカニズム(4) - 伝達函数の計算-

●PRFPMIの場合

●不完全性

- ●鏡の反射率の非対称性(dr)
- ●理想的な動作点と制御点のずれ(dL+, dL-, dl+, dl-)
- ・変調周波数とMC-FSRのずれ(dΩ)

										10 ⁻²	-				-
										10 ⁻³					
fn PM	in PM	fn AM	in AM	pn PM	an PM	pn A№	1an AM	散乱先	de	10					
Х	X	Х	Х	0	0	0	0	fn PM	ţ	10 ⁻⁴					
Х	X	Х	Х	0	0	0	0	in PM	ildi	-5					
Х	x	Х	Х	0	0	0	0	fn AM	Am	10 °			/		
Х	x	Х	Х	0	0	0	0	in AM		1 0 ^{−6}					
Х	X	Х	Х	X	Х	Х	X	pn PM		10					
Х	X	Х	Х	X	Х	Х	Х	an PM			<u> </u>				
Х	X	Х	Х	X	X	X	х	pn AM		1	0 ⁻¹	10 ¹	10 ³	1	1 0 5
Х	x	Х	Х	X	x	X	X	an AM				Freg	uency [ł	lz]	

TAMA300

雑音の発現メカニズム(4) - 伝達函数の計算-

●PRFPMIの場合

●不完全性

- 。鏡の反射率の非対称性
- ●理想的な動作点と制御点のずれ(dL+, dL-, dl+, dl-)
- ・変調周波数とMC-FSRのずれ(dΩ)

●雑音源

■RF発振器(VCXO)の実測値をモデル化

●伝達函数

- ペラメータ値を仮定した計算値
 反射率の非対称性:10ppm
 - ■制御系のオフセット:10⁻¹²m
 - ■変調周波数とFSRのずれ:10Hz

TAMA300

≥変調・復調系による雑音の取り扱い

- 8種類の雑音に基底分解
- ●光学系による散乱を表す散乱行列の計算
- ●複数の光学系による多重散乱を容易に扱えるようになった

●今後

- ▶実験との擦り合わせ
- ◆干渉計設計へのフィードバック