Observation runs of an interferometric gravitational wave detector TAMA300

National Astronomical Observatory of Japan

Koji Arai (TAMA project)

MG10 Plenary

Overview of this talk

• Introduction of TAMA300

a 300-m Fabry-Perot Michelson interferometer 8 observations since 1999

• Long-term observations: Data Taking 6 & 8 DT6: 50 days' observation in the summer of 2001

DT8: 50 days observation in the summer of 2001 DT8: 59 days' observation in the winter-spring of 2003 (LIGO-TAMA joint observation)

• TAMA Data Analysis

Results with DT6 data Preliminary result of NS inspiral search with DT8 data

• Future Plans

LCGT: 3km cryogenic interferometer in a mine

Overview of this talk

Introduction of TAMA300

a 300-m Fabry-Perot Michelson interferometer 8 observations since 1999

• Long-term observations: Data Taking 6 & 8

DT6: 50 days' observation in the summer of 2001 DT8: 59 days' observation in the winter-spring of 2003 (LIGO-TAMA joint observation)

• TAMA Data Analysis

Results with DT6 data Preliminary result of NS inspiral search with DT8 data

• Future Plans

LCGT: 3km cryogenic interferometer in a mine

TAMA300

• Laser interferometric GW detector with arm length of 300m

Site: National Astronomical Observatory of Japan, (Mitaka, Tokyo)

• Object of the project

To develop a detector capable to detect GW events in nearby galaxies. To establish techniques for a future km-class interferometer

Designed sensitivity ~ $h_{\text{RMS}} = 3 \times 10^{-21} \text{ @}300 \text{Hz} \text{ (BW300 Hz)}$

> Aerial view West End Room **Light source** Center room Center **300m** Room 300-m tubes Vibration isolation **300m** Mirrors **Control South End** electronics Room

National Astronimical Observatory of Japan
(Tokyo, Mitaka Campus (E139.32.21 N35.40.25)Middle of the city area~ convenient for detector development
~ heavy traffic

Aerial view

Light source

Center room

300-m tubes

Vibration isolation

Mirrors

Control electronics

Injection locked Nd: YAG laser $\lambda = 1064$ nm, Output of 10W Pre-stabilized by 10-m mode cleaner

Aerial view

Light source

Center room

300-m tubes

Vibration isolation

Mirrors

Control electronics

Beamsplitter

- ~ divides the incident beams into two beams
- ~ recombines the two reflected beams

Photodetectors receive recombined beam at the detection port

Aerial view

Light source

Center room

> 300-m tubes

Vibration isolation

Mirrors

Control electronics

300-m arms: Electro-Chemical Polishing of internal surface

~ realizes vacuum pressure of 10⁻⁸ Pa without baking

Aerial view Light source Center room 300-m tubes Vibration *isolation* Mirrors **Control** electronics

3-layer system:

Active air spring + Stack + Double pendulum suspension Achieved performance

~ better than 10^{-8} at 150Hz

Aerial view

Light source

Center room

300-m tubes

Vibration isolation

Mirrors

Control electronics

Fused Silica \u00e9100mm x 60mm, m=1kg

Polished / Dielectric coating

Aerial view

Light source

Center room

300-m tubes

Vibration isolation

Mirrors

Control electronics

Analog control circuits with capability of digital switching for automatic operation

Overview of this talk

• Introduction of TAMA300

a 300-m Fabry-Perot Michelson interferometer 8 observations since 1999

Image: Second State Content of the second state of the second s

DT6: 50 days' observation in the summer of 2001 DT8: 59 days' observation in the winter-spring of 2003 (LIGO-TAMA joint observation)

• TAMA Data Analysis

Results with DT6 data Preliminary result of NS inspiral search with DT8 data

• Future Plans

LCGT: 3km cryogenic interferometer in a mine

Data taking (DT) runs in past

6 observations without power recycling 2 observations with power recycling [Without power recycling]

DT1	1999 Aug.	6~ 7	1 night	11 hours	
DT2	1999 Sep.	17~20	3 nights	31 hours	
DT3	2000 Apr.	20~23	3 nights	13 hours	
DT4	2000 Aug.	21~Sep. 4	13 nights	167 hours	
DT5	2001 Mar.	2~ 8	6 days	111 hours	
DT6	2001 Aug.	1~Sep. 20	50 days	1038 hours	LISM(20m
[With power recycling]					
DT7	2002 Aug,	31~Sep. 2	1 day	25 hours	LIGO & GE
DT8	2003 Feb.	14~Apr. 15	59 days	1158 hours	LIGO

Interferometer on Data Taking 6

• DT6 ~ 50 days run (2001/8/1~9/20)

- IFO configuration: Fabry-Perot Michelson (w/o power recycling)
- Enough sensitivity to detect Galactic NS merger events Enough stability for long-term operation

Best sensitivity: Accumulated data: Duty Cycle: Longest lock:

5x10⁻²¹ [/Hz^{1/2}] 1038 hours 86.5% 22 hours

Laser

10m

Mode

Cleaner

300m

FP cavitv

Fabry-Perot

Interferometer

Michelson

300m FP cavity

 Coincidence with LISM 20m IFO at Kamioka mine

```
Lock overlapping 709 h (59.1%)
```

Interferometer on Data Taking 8 • DT8 ~ 2 months run (2003/2/14~4/15) First full-time joint observation with LIGO (Called S2 in LIGO) First long-term observation with power recycling Power recycling of TAMA300 (2001/10~Present) Power recycling gain of 4.5 Power Recycling Best sensitivity: 2.7x10⁻²¹ 300m arm mirror [/Hz^{1/2}] **IFO** operation 300m arm Accumulated data: 1158 hours Laser 81.3 % Duty cycle: 20.5 hours Longest lock:

Principle of power recycling

• Laser light is enclosed in the interferometer

Sensitivty in DT6 & DT8

Sensitivty in DT6 & DT8

Displacement noise level of TAMA300

Frequency [Hz]

History of the sensitivity

Improvement by a factor of 10³ ~ 10⁴ ~ operation since 1999

Observable distance

Distance for an optimally oriented m+m system, to yield SNR=10 DT6 DT8

Duty cycle

DT6: 1038h07m (out of 1200 hours, duty cycle 86.5%) DT8: 1157h51m (out of 1424 hours, duty cycle 81.3%)

Observation Calendar for DT8

DT8: Disturbance by construction

13rd May, 2003 (Thu)

(Noisy weekday)

Construction works near the site

Overview of this talk

• Introduction of TAMA300

a 300-m Fabry-Perot Michelson interferometer 8 observations since 1999

• Long-term observations: Data Taking 6 & 8 DT6: 50 days' observation in the summer of 2001 DT8: 59 days' observation in the winter-spring of 2003

(LIGO-TAMA joint observation)

TAMA Data Analysis

Results with DT6 data Preliminary result of NS inspiral search with DT8 data

• Future Plans

LCGT: 3km cryogenic interferometer in a mine

Data analysis activities

• Matched filtering analysis

- > NS binary inspirals
- > Coincidence analysis between multiple detectors
- > 0.5Msolar Macho BH binary inspirals
- > BH ringdown analysis

• Burst analysis

> Rejection of non-gaussian noise

by time-scale selection

• Continuous wave

> Search for possible GW from SN1987a remnant

NS ispirals: Matched Filtering

• Each data segment has two outputs

- ρ : signal amplitude ~ correlation with the template
- χ^2 : deviation of the signal from the selected template

Event distrib. / detection efficiency

Upper limit to the Galactic NS merger

• Observation time

 $T_{obs} = 1163$ hours (for lock longer than 520sec)

• Event threshold

1039 hours for DT6

 $\rho/(\chi^2)^{1/2} = 12.5$ (for false alerm rate = 0.8 / year)

- **Detection efficiency** $\rho/(\chi^2)^{1/2} = 16$ for DT6
 - $\epsilon = 0.61$ (from Galactic event monte-carlo simulation)
- Upper limit to the avg # of events 0.23 for DT6
 - Observed # of event = 0over the threshold

=> N=2.3 (C.L.: 90%) (from standard Poisson statistics analysis)

- Preliminary search result for DT8 => N / T_{obs} / ε = 0.0033 [event/hr]

= **2.9x10¹** [event/yr]

for 1.0 Msolar $< m_1, m_2 < 3.0$ Msolar

For DT6 =**0.0095** [1/hr] =**8.3x10¹** [1/yr] 1 < m < 2Msolar

DT6: TAMA-LISM20m coincidence run

• Location of TAMA and LISM20m prototype

- Distance between TAMA and LISM ~ 220km => Max delay of signal arrival time = 0.73msec
- Sensitivity $h = 8 \times 10^{-20} / \text{Hz}^{1/2}$
- Analyzed 244 hours of commonly-locked data

• Relation between TAMA and LISM arms direction

Results of coincident event search

Results of coincident event search

Burst GW analysis

Distinguish burst signals with a certain time-scale using higher-order statistics

The detector output:

Full of bursts ~ essentially indistingushable from GWs

=> assume time-scale of the GW bursts

(c.f. Supernova)

Two statistics of each data segment:

Averaged noise power:Averaged noise level2nd-order moment of noise power:Gaussianity

Bursts with different time-scale have different behaviours in terms of those two statistics => Select bursts only with target time-scale

Burst GW analysis

Analysis of DT6 data

Rejected 10% of data by the time-scale filter

=> Improvement of false event rate 1/1000

(False dismissal rate = 1ppm)

Event rate for 10msec GWs hrms: ~ 1×10^{-17} : 1 ev/hr ~ 3×10^{-17} : 10⁻² ev/hr Event rate for 1msec GWs hrms: ~ 3×10^{-17} : 4 ev/hr

Continuous wave from SN1987A

Target: possible SN1987a remnant

(Middleditch, et al. New Astronomy, 5 (2000) 243)

o Expected Waveform: Sinusoidal (f=934.908Hz +/- 0.05Hz)

- + time dependence of the sensitivity
- + doppler correction

(the earth's daily/yearly round)

+ spindown correction

(assume spindown rate: 2~3x10⁻¹⁰ [Hz/s])

o Search result: DT6 50days data

Upper limit: $h=5x10^{-23}$ (C.L. 99%)

(h_{upperlimit} from the spindown:

Overview of this talk

• Introduction of TAMA300

a 300-m Fabry-Perot Michelson interferometer 8 observations since 1999

Long-term observations: Data Taking 6 & 8

DT6: 50 days' observation in the summer of 2001 DT8: 59 days' observation in the winter-spring of 2003 (LIGO-TAMA joint observation)

• TAMA Data Analysis

Results with DT6 data Preliminary result of NS inspiral search with DT8 data

The second secon

LCGT: 3km cryogenic interferometer in a mine

LCGT: Japanese future project

Large-scale Cryogenic Gravitational wave Telescope

3-km interferometer at Kamioka mine Cryogenic (~20K) mirror to reduce thermal noise

Design sensitivity of LCGT

LCGT noise budget

Sensitivity of LCGT will be quantum-noise limited LCGT will be capable of detecting NS binary inspiral at 200Mpc with SNR of 10

CLIO: Cryogenic laser interferometer Observatory

100-m cryogenic interferometer detector in Kamioka Pilot program to demonstrate feasibility of LCGT technologies

The construction is underway

Kamioka Laser Center Tank Statio Interferometric

~ for geophysical purposes

Summary

• Interferometric GW detector TAMA300

A 300-m Fabry-Perot Michelson interferometer 8 observations from 1999 to 2003

• Long-term (>1000h) observation DT6 / DT8

- DT6: h= 5×10^{-21} /sqrtHz 1038h => duty cycle 86.5%
- DT8: First long-term operation with power recycling Full-time joint observation with LIGO $h=2.7\times10^{-21}/sqrtHz$ 1158h => duty cycle 81.3%

Summary

• Data Analysis using DT6 / DT8 data >NS ispirals: Galactic event rate **DT6** R < 0.0095 event/hr (C.L.90%) for 1 < m < 2Msolar **DT8** R < 0.0033 event/hr (C.L.90%) for 1 < m < 3Msolar >Coincidence analysis between multiple detectors TAMA300 & LISM (20m) >Burst search Rejection of non-gaussian noise by time-scale selection $R = 0.01 \text{ event/hr for } h_{rms} > 3 \times 10^{-17}$ (10ms pulse) >Continuous wave from possible SN1987a remnant $h < 5 \times 10^{-23}$ (C.L. 90%)

• LCGT: Large-scale Cryogenic Gravitational wave Telescope