Operation of TAMA300 detector

National Astronomical Observatory of Japan

Koji Arai (TAMA project)

MG10 GW3 session

TAMA300

• Laser interferometric GW detector with arm length of 300m

Site: National Astronomical Observatory of Japan, (Mitaka, Tokyo)

Object of the project

To develop a detector capable to detect GW events in nearby galaxies.

To establish techniques for a future km-class interferometer

Designed sensitivity ~ $h_{RMS} = 3 \times 10^{-21} @300Hz$ (BW300Hz)

Center Room

TAMA300 detector ~ overview

History of TAMA development

Principle of power recycling

• Laser light is enclosed in the interferometer

Frequency Stabilization

Power recycling

• Sensitivity improved by power recycling

Reduction of detector noise, shot noise, and frequency noise

History of the sensitivity

Improvement by a factor of 10³ ~ 10⁴ ~ operation since 1999

Observable distance

• Distance of binary inspirals

~ expecting SNR=10, optimal incident angle assumed

Sufficiently sensitive to galactic inspiral events

Displacement noise level of TAMA300

Frequency [Hz]

Data taking (DT) runs in past

6 observations without power recycling 2 observations with power recycling [Without power recycling]

DT1	1999 Au	g. 6∼	7	1 night	11 hours	
DT2	1999 Se	p.17~	20	3 nights	31 hours	
DT3	2000 Ap	r. 20~	[,] 23	3 nights	13 hours	
DT4	2000 Au	g. 21~	Sep. 4	13 nights	167 hours	
DT5	2001 Ma	ır. 2~	8	6 days	111 hours	Coincidence
DT6	2001 Au	g. 1~	Sep. 20	50 days	1038 hours	LISM(20m)
[With power recycling]						
DT7	2002 Au	g, 31~	Sep. 2	1 day	25 hours	LIGO & GEO
DT8	2003 Fe	b. 14~	Apr. 15	59 days	1158 hours	LIGO

Data Taking 8 (LIGO S2)

• DT8 ~ 2 months run (2003/2/14~4/15)

First full-time joint observation with LIGO

(c.f. DT7: partial participation of TAMA to S1)

First long-term observation with power recycling

Power recycling of TAMA300 (2001/10~Present)

Power recycling gain of 4.5

Best sensitivity: 2.7×10^{-21} [/Hz^{1/2}]

IFO operation

Accumulated data: 1158 hours

Duty cycle: 81.3 %

Longest lock: 20.5 hours

Improved long-term stability

Longest lock stretch in the observations

Improved long-term stability

Longest lock stretch in the observations

Duty cycle

• 1157h51m (out of 1424 hours, duty cycle 81.3%)

DT8 ~ **Disturbance by construction**

13rd May, 2003 (Thu)

(Noisy weekday)

Construction works near the site

Daily trend of duty cycle/sensitivity

With construction ~ IFO didn't work => Duty cycle about 60%

Even without construction ~ sensitivity reduction of about 20%

Seismic level vs Duty cycle

Duty cycle vs Seismic motion

Data analysis activities

• Matched filtering analysis

> NS binary inspirals

> Coincidence analysis between multiple detectors

> 0.5Msolar Macho BH binary inspirals

> BH ringdown analysis

• Burst analysis

> Rejection of non-gaussian noise

by time-scale selection

Continuous wave

> Search for GW from possible SN1987a remnant

Matched Filtering analysis

- Detector outputs: s(t) = Ah(t) + n(t)h(t): known gravitational waveform (2.5PN template) n(t): noise.
- Correlation of the detector output and the template in the frequency domain:

$$\rho(m_1, m_2, t_c, \dots) = 2 \int \frac{\widetilde{s}(f) \widetilde{h}^*(f)}{S_n(f)} df$$

- Weighted by $S_n(f)$ noise spectrum density
- Signal to noise ratio SNR = $\rho / \sqrt{2}$
- Find the optimal parameters $m_1, m_2, t_c, ...$ in a data chunk which maximizes ρ

Divide frequency region into bins.

Test whether the contribution to r from each bins agree with that expected from chirp signal

$$\boldsymbol{r} \equiv (s,h) \left(= 2 \int \frac{\tilde{s}(f)\tilde{h}^*(f)}{S_{n}(f)} df \right)$$

$$\boldsymbol{c}^{2} \equiv \sum_{i} \frac{1}{\boldsymbol{s}_{i}^{2}} (\boldsymbol{r}_{i} - \overline{\boldsymbol{r}}_{i})^{2}$$
$$\boldsymbol{s}_{i}^{2} \equiv \left\langle (\boldsymbol{r}_{i} - \overline{\boldsymbol{r}}_{i})^{2} \right\rangle, \quad \overline{\boldsymbol{r}}_{i} = \left\langle \boldsymbol{r}_{i} \right\rangle$$

Event distrib. / detection efficiency

Event distribution / threshold

Upper limit to the Galactic NS merger

• Observation time

 $T_{obs} = 1163$ hours (for lock longer than 520sec)

• Event threshold

1039 hours for DT6

 $\rho/(\chi^2)^{1/2} = 12.5$ (for false alerm rate = 0.8 / year)

- **Detection efficiency** $\rho/(\chi^2)^{1/2} = 16$ for DT6
 - $\epsilon = 0.61$ (from Galactic event monte-carlo simulation)
- Upper limit to the avg # of events 0.23 for DT6
 - Observed # of event = 0over the threshold

=> N=2.3 (C.L.: 90%) (from standard Poisson statistics analysis)

- Preliminary search result for DT8 => N / T_{obs} / ε = 0.0033 [event/hr]

= **2.9x10¹** [event/yr]

for 1.0 Msolar $< m_1, m_2 < 3.0$ Msolar

For DT6 =**0.0095** [1/hr] =**8.3x10¹** [1/yr] 1 < m < 2Msolar

Future Plan

Data Analysis of the DT8 data other than NS inspirals In progress

• Investigation on the noise issues

In particular, noises between 100Hz and 1kHz.

• Further automation of the observation

To operate the interferometer with less operators

• Upgrade of the vibration isolation system

Seismic attenuation system (SAS)

Isolation from low frequency (~0.1Hz)

R&D with Caltech and Univ. of Pisa

Installation in early 2005

More power in the arms
 High gain (G=10) recycling

Summary

Interferometric GW detector TAMA300 Data Taking 8

Full-time joint observation with LIGO First long-term operation with power recycling

With improved sensitivity by power recycling

 $h = 2.7 \times 10^{-21} / sqrtHz @1.5kHz$

1158 hours of 1424 hours => duty cycle 81.3%

• Data Analysis using DT8 data

NS ispirals: Galactic event rate R < 0.0033 event/hr (C.L.90%) for 1.0 Msolar < m1, m2 < 3.0Msolar