Status of TAMA

National Astronomical Observatory of Japan

Koji Arai (TAMA project)

Overview of this talk

Introduction

Laser interferometric gravitational-wave detector

Worldwide status

• TAMA300 detector Overview of the detector

Activity1: 1000hours observation(2001/8-9)Activity2: Recycling experiment(2001/12~)

• Analysis of TAMA300 data Inspiral search, burst search, and pulsar search

Overview of this talk

Introduction

Laser interferometric gravitational-wave detector

Worldwide status

• TAMA300 detector Overview of the detector

Activity1: 1000hours observation(2001/8-9)Activity2: Recycling experiment(2001/12~)

• Analysis of TAMA300 data Inspiral search, burst search, and pulsar search

Gravitational wave detection (1)

• Direct detection of GW

Binary pulsar observation ⇒ Indirect proof of GWs

Direct observation of GWs ⇒ Confirmation of General Relativity in a strong gravitational field

Information of astrophysical objects which is different from that with EM observation

Gravitational wave detection (2)

• Resonant mass detector

Excitation of quadrupole modes of the bar

⇒ Narrow-band detection

~ only at the resonant frequency

• Interferometric detector

Differential pathlength change of two arms ⇒ Wide-band detection

~ waveform is preserved

Interferometric GW detector throughout the world

• 4 projects, 6 large-scale interferometers

First light 1999 Improving the sensitivity and the stability 8 engineering runs Run into Scientific runs from 2002

Engneering and Science runs from 2002 Changing the optical configuration (Signal Recycling)

5 engneering runs End commissioning of CITF (Short interferometer), Arm construction finished Move to Full 3k IFO

Overview of this talk

Introduction

Laser interferometric gravitational-wave detector

Worldwide status

TAMA300 detector
 Overview of the detector

Activity1: 1000hours observation(2001/8-9)Activity2: Recycling experiment(2001/12~)

 Analysis of TAMA300 data Inspiral search, burst search, and pulsar search

TAMA300

• Laser interferometric GW detector with arm length of 300m

Site: National Astronomical Observatory of Japan, (Mitaka, Tokyo)

• Object of the project

To develop a detector capable to detect GW events in nearby galaxies. To establish techniques for a future km-class interferometer

Designed sensitivity ~ $h_{\text{RMS}} = 3 \times 10^{-21} \text{ @}300 \text{Hz} \text{ (BW300 Hz)}$

Bird's view of the TAMA site

• National Astronomical Observatory of Japan **Tokyo, Mitaka Campus** (E139.32.21 N35.40.25)

Center Room

South End Room

End

Middle of a city area ~ heavy traffic

TAMA300 detector ~ overview

300m vacuum tube

Vibration Isolation System

• 3 layer system Actively-controlled air spring **Stack** (Sandwitches of rubbers and metal blocks) Double pendulum suspension

Achieved performance ~ better than 10⁻⁸ at 150Hz

Mirror

High mechanical quality ~ to suppress thermal vibration in the observation band

High optical quality
~ ultra low loss (~30ppm)
in reflection.

History of TAMA development

Overview of this talk

Introduction

Laser interferometric gravitational-wave detector

Worldwide status

• TAMA300 detector Overview of the detector

Activity1: 1000hours observation (2001/8-9) Activity2: Recycling experiment (2001/12~)

 Analysis of TAMA300 data Inspiral search, burst search, and pulsar search

Past data taking (DT) runs

[Without power reycycling]

1999 Aug. 6-7	1 night	11 hours
1999 Sep. 17~20	3 nights	31 hours
2000 Apr. 20~23	3 nights	13 hours
2000 Aug. 21~Sep. 4	13 nights	167 hours
2001 Mar. 2~8	6 days	111 hours
2001 Aug. 1~Sep. 20	50 days	1038 hours
	 1999 Aug. 6-7 1999 Sep. 17~20 2000 Apr. 20~23 2000 Aug. 21~Sep. 4 2001 Mar. 2~8 2001 Aug. 1~Sep. 20 	1999 Aug. 6-71 night1999 Sep. 17~203 nights2000 Apr. 20~233 nights2000 Aug. 21~Sep. 413 nights2001 Mar. 2~86 days2001 Aug. 1~Sep. 2050 days

[With power recycling]

DT7 2002 Aug, 31~Sep. 2 1 day 25 hours

Data runs have been held prior to the other projects.

Achievements on DT6

Sensitivity enough to detect Galactic GW events

- Strain sensitivity: $h = 5 \times 10^{-21} / sqrtHz$
- NS ispirals with SNR=10: 33kpc
- Stable operation ~ high duty ratio
 Total amount of observation data: 1038 h (86.5%) (adjustment period excluded)

• Coincident run with Kamioka 20m prototype Total amount of coincident operation: 709 h (59.1%)

Achieved sensitivity (at DT6)

• Displacement noise dx = $1.5 \times 10^{-18} \text{ m/Hz}^{1/2}$ Strain sensitivity h = dx/300 (@700Hz)

 $= 5 \times 10^{-21} / Hz^{1/2}$

DT6: SNR to compact binaries

• Observable distance with SNR=10 using matched filtering

Observation calendar

Causes of obs. time loss

Total obs. time: 1038:07:35, Duty cycle: 86.5105% Tape exchange

SNR trend during DT6

• About 80% is adequate to analyses

=> To data analysis

Overview of this talk

Introduction

Laser interferometric gravitational-wave detector

Worldwide status

• TAMA300 detector Overview of the detector

Activity1: 1000hours observation (20) Activity2: Recycling experiment (20)

(2001/8-9) (2001/12~)

• Analysis of TAMA300 data Inspiral search, burst search, and pulsar search

Power recycling

• Enhancing light power in the interferometer

Principle of power recycling

• Why recycling mirror increases the light power in the interferometer?

Principle of power recycling

• Why recycling mirror increases the light power in the interferometer?

Q. The light has no way out from the interferometer. Where does the light go? Principle of power recycling

• Laser light is enclosed in the interferometer This condition is so-called "resonant", "impedance matched", or "recycled" Total dissipated power = Incident power $P_{\rm inc} = \varepsilon_{\rm loss} P_{\rm internal} \rightarrow P_{\rm internal} = \frac{P_{\rm inc}}{\varepsilon_{\rm loss}} \equiv g P_{\rm inc}$

Power in the arms → enhanced Low loss optics → High recycling gain

Displacement noise level of TAMA300

Expected SNR to inspirals

• Observable distance with SNR=10 using matched filtering

Estimation of noise contributions

Noise estimation based on signal injection

Stability

Recycling also increases complication of the system

Internal power becomes sensitive to mirror motions

Longest continuous operation

with power recycling: 8h 38m (without power recycling: 24h 50m)

Concident observations

• large-scale interferometers in operation

S1 (Scientific run 1)

2002/8/22-2002/9/9

Coincident run by LIGO and GEO

Partial participation of TAMA

S2 (Scientific run 2) 2003/2/14-2002/4/14

Full coincident run by LIGO, GEO and TAMA

TAMA, LIGO (and GEO) detectors enter the observation phase in 2002 - 2003.

- 5 detectors are operating in Comparable Sensitivity TAMA: 300m at Mitaka Tokyo LIGO: Livingston 4km, Hanford 4km, 2km GEO: 600m
- Benefit
 - Increase of whole sky coverage
 - Statistical Treatment
 - More strict rejection for fake events
 - Efficient criteria with same fake rate of single detector analysis
- Stable run scheduling
 LIGO(+GEO) S1<-> TAMA DT7
 - 2002, summer. 2 weeks <-> 3 days
 - Actual 9hrs 50min. common locking data

LIGO(+GEO) S2 run <-> TAMA DT8

• Duration: 2/14/2002 - 4/14/2002

Common Lock of 5 interferometers:9hrs 50minLongest Common Lock stretch:2hrs 24min

Coincidence Run (TAMA300, LIGO, and GEO600)

Overview of this talk

Introduction

Laser interferometric gravitational-wave detector

Worldwide status

• TAMA300 detector Overview of the detector

Activity1: 1000hours observation(2001/8-9)Activity2: Recycling experiment(2001/12~)

Analysis of TAMA300 data Inspiral search, burst search, and pulsar search

Gravitational wave search: Compact binary Inspiral

Matched filtering analysis (Tagoshi, et al.)

- We analyzed 1000 hours data of DT6 by matched filtering to search for compact binary inspirals
- Upper limit to the event rate:
- •DT2: 0.59/hours (0.3-10Msolar) (Phys.Rev.D63,062001(2001))
- •DT4: 0.027/hours (0.3-4.7Msolar)
- •DT6: Upper limit to Galactic event rate:

0.0095/hours (1-2Msolar)

TAMA-LISM coincidence analysis (Takahashi's talk) is also done

Matched filter

- Detector outputs: s(t) = Ah(t) + n(t)h(t): known gravitational waveform (template) Post-Newtonian n(t): noise. approximation
- Outputs of matched filter:

$$\mathbf{r}(m_1, m_2, t_c, \dots) = 2\int \frac{\widetilde{s}(f)\widetilde{h}^*(f)}{S_n(f)} df$$

•
$$S_n(f)$$
 noise spectrum density

- signal to noise ratio $SNR = r / \sqrt{2}$
- Matched filtering is the process to find optimal parameters which realize

$$\max_{m_1,m_2,t_c,\dots} \boldsymbol{r}(m_1,m_2,t_c,\dots)$$

Upper limit to the Galactic event rate

threshold=16 (~S/N=11) (fake event rate=0.8/year)

Efficiency for Galactic events $\varepsilon = 0.23$ (from simulation)

•We also obtain upper limit to the average number of events over threshold by standard poisson statistics analysis

➡ N=2.3 (C.L.=90%)

•Data length used : T = 1039 hours

Upper limit to the Galactic event rate = $\frac{N}{T\varepsilon}$ =0.0095 [1/hour] (C.L.=90%)

> C.f. Caltech 40m : 0.5/hour (*C.L.*=90%) Allen et al. Phys. Rev. Lett. 83, 1498 (1999).

Burst wave analysis (1) (Ando, et al.)

--- Burst gravitational wave search ---

 Burst gravitational wave analysis (Super novae, etc.)
 Waveforms are poorly predicted

 Cannot use matched filtering method
 Look for 'something unusual' events
 Detection efficiency is limited by non-Gaussian noises in a GW detector

Rejection of non-Gaussian noise is indispensable

- Single detector
 - Detector improvement
 - Data processing
- Correlation with other detectors
 - Other GW detectors
 - Other astronomical channels
 - (Super novae, Gamma-ray burst, etc.)

Burst wave analysis (2) --- Reduction of non-stationary noise ---

Non-Gaussian noise reduction

Distinguish GW signal from non-Gaussian noises

with time-scale of the 'unusual signals'

GW from gravitational core collapse < 100 msec,

Noise caused by IFO instability > a few sec

Averaged noise power

• 2nd-order moment of noise power

Estimate parameter : 'GW likelihood'

Reduce non-stationary and non-Gaussian noises without rejecting GW signals

Burst wave analysis (3) --- Data processing ---

Data Processing

- 1. Calculate Spectrogram by FFT
- 2. Extract a certain time-frequency region to be evaluated
- 3. Evaluate GW likelihood at each frequency
- 4. Reject given time region if it has large 'non-GW like' ratio
- 5. Calculate total power for given T-F region

• 'Filter' outputs

Survived ---- Stable detector operation Data may be used for GW search Large power : event candidates Rejected ---- Detector instability Detector 'dead time'

Burst wave analysis (4) --- DT6 data analysis ---

Continuous wave from SN1987A

Continuous GW wave search at around 935Hz from SN1987a remnant (Soida, et al.)

Expected Waveform: Sinusoidal

(f=934.908Hz +/- 0.05Hz)

- + time dependence of the sensitivity
- + doppler correction

(the earth's daily/yearly round)

+ spindown correction

(assume spindown rate: 2.5x10⁻¹⁰ [Hz/s])

Search: DT6 50days data

Search result

Online analysis

• Further development on data analysis system Requirement for long / coincident observation

Real-time/online GW event search

-> PC clusters on each institute (NAO, Osaka Univ, Osaka City Univ., Univ. of Tokyo, ICRR)

Systematic search

-> Use of unified software

Network data distribution

-> connect each institute with Super SINET (>10Gbps)

Summary

• Interferometric GW detector TAMA300 Observation: 50 days, more than 1000 hours Power recycling: Improvement of the sensitivity

 $h = 3.3 \times 10^{-21} / sqrtHz @1.5kHz$

Data Analysis using DT6 data
 Binary ispirals
 Burst search
 Continuous wave search

• Future plan

Continue to improve the performance Online/real-time analysis Coincident observation with LIGO and GEO