Power recycling experiment for TAMA300

National Astronomical Observatory

Koji Arai

TAMA300 Recycling

- K. Arai 02/02/06 2nd TAMA Sympo
- Recycling experiment began in Oct., 2001
- Purpose:
 - To improve SNR to NS binaries To integrate the technical achievements of the R&D
- Current status: Full lock has been achieved
 Recycling gain ~ 4 (designed: 4.6) Continuous lock ~ 46min
 Length control with the frontal modulation scheme Alignment control for the test masses

Purpose

- Scientific motivation
 - To perform observations with improved SNR to NS binaries
- 1st step: Low gain recycling (RRM~48%, G~4.6)
 - Target: Faster realization of the full lock
 - > Earlier full operation / observation
 - > Feeding back information to design of high gain recycling
 - > Establishing techniques for diagnoses / analyses
- 2nd step: High gain recycling (RRM~90%, G~10)
 - Target: Optimizing the detector performance

Past recycling R&Ds in Japan

- 3m prototype (G_{achieved}: 2.9~5.5)
 - Demonstration of recycling for suspended FPMI*1
 - Investigation of length sensing/control schemes
 - > Sideband elimination technique *2 *3
 - > 3rd harmonic demodulation technique *4
- 20m prototype (G_{achieved}: 8~12)
 - Evaluation of the TAMA optics*5
 - Investigation of length/alignment control for high recycling gain

*1 M. Ando, et al, Phys. Lett. A 248 (1998) 145
*2 M. Ando, et al, Phys. Lett. A 237 (1997) 13
*3 M. Ando, et al, Phys. Lett. A 268 (2000) 268
*4 K. Arai, et al, Phys. Lett. A 273 (2000) 15
*5 S. Sato, et al, Appl. Opt. 39 (2000) 25, 4616

Optical configuration

Lock acquisition (1)

Lock acquisition (2)

Length sensing for the lock acquisition

Lock acquisition (3)

3rd harmonic demodulation for δl₊ and δl₋
 Photocurrent at the 3fm ~ beating of SB2 and SB-1

• Robust extraction of δl_+ and δl_-

Contribution of carrier audio-sidebands (mainly by δL_+)

 \rightarrow Reduced

Amplitudes and signs

 \rightarrow Less dependent on the couplings of CA and SB1

Lock acquisition (4)

- Signals from arm pick-offs
 - Similar to Pound-Drever-Hall technique

- Power recycling mixes the information of the arms each other
 - > Ratio of the mixing is 50% at most (for RRM=48%, G~4.6).

Lock acquisition (4)

• Time-series data of a lock acquisition

Alignment control (1)

• Wave Front Sensing for the test masses

- Currently the signals were taken from the PO ports
- Eventually it will be replaced to the common differential control

Alignment control (2)

Stabilizing gain fluctuation by WFS

Without WFS

With WFS

 The alignment servos were activated even during the lock acquisition

Operating mode Length sensing for the operation

Frontal modulation scheme

Stability

- 46 min. of continuous lock
 - Current most longest lock stretch

Time [min]

Sensitivity

Displacement sensitivity Displacement noise level of TAMA300

 1×10^{-17} m/sqrtHz ~ 7 times worse than the FPMI best

Plans for improvement

Drift control

- Optical axes control
- Alignment
 - Common-differential sensing/control
 - Sensing matrix diagonalizing
- More power in the arm
 - Introducing high power laser to the IFO
 - Characterizations for the high gain recycling
- Noise issue

Summary

The recycling experiment

- began 4 months ago
- The full lock has already been achieved
 - Arm lock by auxiliary length signals
 - 3rd harmonic demodulation
- Stability ~ 46min continuous lock
 - The stability was much improved by the alignment control
- Sensitivity ~ under investigation
 - Still x7 worse than the best