Development of the interferometer (1)

- Development steps of the TAMA300 interferometer -

• TAMA300 interferometer is developed step by step....

Development of the interferometer (2)

— First observation phase (Phase I) —

- First observation phase of TAMA300 (**Phase I**).
 - Start in August, 1999.
 - \cdot Operate almost the whole interferometer.
 - \cdot 10 W laser source with 10 m mode cleaner.
 - \cdot Main interferometer with 300 m arm cavities.
 - \cdot Without power recycling.
 - Sensitivity $h \sim 3 \times 10^{-20}$.
 - ⇒ Displacement noise $< 5 \times 10^{-19}$ m/ $\sqrt{\text{Hz}}$. Laser frequency noise $< 1 \times 10^{-6}$ Hz/ $\sqrt{\text{Hz}}$.
- Developing the interferometer.

— The interferometer is **operated with the final configuration**.

Development of the interferometer (3)

— TAMA300 interferometer for Phase I —

10-W laser source (1)

— Features —

• Injection-locked Nd:YAG laser.

- \cdot Output power of 10 W.
- \cdot Master laser
 - \cdot LD-pumped Nd:YAG laser (700 mW).
 - \cdot Frequency-controlled with
 - Thermal control, PZT, External EOM.
- \cdot Slave laser
 - \cdot Fiber LD-pumped ring laser.
 - Injection-locked to the master laser with a VCM (Voice Coil Motor).
 - Error signal is extracted using 20 MHz phase modulation.
- \cdot Intensity stabilization
 - \cdot Controlled with an external EOM.

10-W laser source (2)

— Intensity stabilization —

• Intensity noise is stabilized using an EOM. — stabilized to 2×10^{-8} $1/\sqrt{\text{Hz}}$.

10-m mode cleaner (1)

— Features —

• 10-m ring cavity.

- \cdot Three mirrors
 - Independently suspended (double pendulum).
- · Finesse 1,700.
- \cdot Transmissivity 54%.
- Length control
 - Error signal extracted using 12 MHz phase modulation, fed back to to laser source.
- Transmission of the modulation sidebands.
 - · FSR = Modulation freq. (15.235 MHz).
 - \cdot Error signal
 - extracted using additional modulation.

10-m mode cleaner (2)

— Frequency stabilization —

- Laser frequency noise
 - pre-stabilized using the 10-m mode cleaner.
 - \rightarrow stabilized to 5 \times 10⁻⁴ Hz/ $\sqrt{\text{Hz}}$.

10-m mode cleaner (2)

- Transmission of the modulation sidebands -

• Phase modulator

for the control of the main interferometer

- \cdot Placed before the MC.
 - \rightarrow reduce the wave-front distortion.
- \cdot Modulation frequency $(\nu_{\rm mod})$

— equal to the FSR of the MC ($\nu_{\rm FSR}$).

- \cdot Modulation sidebands pass through the MC.
- \cdot Cause excess noise

without fine adjustment of $\nu_{\rm mod}$.

10-m mode cleaner (3) — Excess noise —

• Adjust the modulation freq. equal to the FSR of the MC. (the difference — below 10 Hz)

• Excess noise is below the shot noise level (30 mA).

300-m arm cavity (1) — Features —

- 300-m Fabry-Perot arm cavities
 - \cdot Finesse 516.
 - \cdot Cut-off frequency 480.
 - Alignment control system (Wave-front sensing scheme).

300-m arm cavity (2)

— Alignment control —

• Operated stably with the alignment control system.

Four degrees of freedom are controlled for each arm cavity.

300-m arm cavity (3)

- Long term operation -

- One arm cavity operated about 4 days without unlock.
 - \cdot Laser source 700 mW NPRO.
 - \cdot With alignment control.

Main interferometer with the 300-m arm cavities (1)

— Features —

- Michelson interferometer with the 300-m Fabry-Perot arm cavities.
 - \cdot Finesse 516.
 - \cdot Cut-off frequency 480.
- Controlled with the frontal modulation scheme.
 - · δL_{-} signal fed back to the front mirrors (diff.).
 - · δl_{-} signal fed back to the beam splitter.
 - · δL_+ signal fed back to the laser and the MC.
- Alignment control system.
 - \cdot Wave-front sensing scheme.
 - \cdot Sample small power with pick-off mirrors.

Fabry-Perot-Michelson interferometer with an arm length of 300 m

Main interferometer with the 300-m arm cavities (2) — Operation of the main interferometer —

- Main interferometer operated over 4 hours.
 - \cdot Laser source 700 mW NPRO.
 - \cdot With alignment control.

TAMA300 interferometer (1)

— Operation of the whole interferometer —

• TAMA300 interferometer is

operated under the Phase I configuration.

- \cdot 10 W laser source.
 - \cdot Frequency of the master laser
 - controlled with the error signals of the MC and the interferometer.
 - \cdot Slave laser injection-locked to the master laser.
- \cdot 10 m ring mode cleaner.
 - \cdot Pre-stabilize the laser frequency.
 - \cdot Transmission of the modulation sidebands.
 - · Length is controlled with the δL_+ signal of the interferometer.
- \cdot Main interferometer with the 300 m arm cavities.
 - \cdot Controlled with the frontal modulation scheme.
 - \cdot δL_{-} signal differentially fed back to the front mirrors.
 - · δl_{-} signal fed back to the beam splitter.
 - $\cdot \ \delta L_+$ signal fed back to the laser and the MC.
 - \cdot Alignment control for the arm cavities.
 - · Without power recycling.

TAMA300 interferometer (3)

— Lock acquisition —

• Difficult to acquire the lock of the interferometer only with the main control signals.

 \downarrow

Use auxiliary control signals.

extracted from the sampled beams from the pick-off mirrors.

TAMA300 interferometer (4)

- Displacement noise level of the TAMA300 interferometer -

• Preliminary sensitivity.

Displacement noise level — $1 \times 10^{-16} \text{ m}/\sqrt{\text{Hz}}$.

• Stability — operated over one hour.

TAMA300 interferometer (5)

— Noise sources and problems —

• Noise sources.

- $\cdot \sim 30$ Hz seismic noise.
- $\cdot \sim \! 500 \; \mathrm{Hz} \mathrm{alignment}$ control system noise.
- \cdot 500 Hz $\sim -$ noises due to electronic circuits.
- Poor contrast and CMRR.

```
Contrast -95.4\%, CMRR -44.
```

Probably, because of insufficient mode matching and alignment. \clubsuit

Changed the mode-matching telescope

between the MC and the main interferometer.

```
\Downarrow Mode matching — 97.8% \rightarrow 99.8%.
```

Summary and future works

• The TAMA300 interferometer is

operated with the final control configuration for the Phase I observation.

- · Sensitivity $\sim 1 \times 10^{-16} \text{ m}/\sqrt{\text{Hz}}$.
 - \Downarrow
- Improve the sensitivity $\rightarrow 5 \times 10^{-19} \text{ m}/\sqrt{\text{Hz}}$.
 - \cdot Incident full laser power onto the PDs \rightarrow improve the shot noise and detection system noise level.
 - \cdot Optimize the alignment filter \rightarrow reduce the alignment control system noise.
 - \cdot Change the mode-matching telescope \rightarrow improve the contrast and the CMRR.
- Realize stable operation.
 - · Low frequency drift control (beam pointing, beam centering, modulation frequency, ...).
 - \cdot Improvement of the environment (vibration due to vacuum pumps, ...).
- Data-acquisition and analysis.
 - \cdot Data-acquisition system.
 - \cdot Calibration.
 - \cdot Data analysis.

Locked-Fabry-Perot configuration (1)

- Optical and control configuration -

- Operate the both arm cavities with the 10 W laser source.
- Locked Fabry-Perot configuration.

