TAMA300: current status and the joint observation with LIGO

National Astronomical Observatory of Japan

Koji Arai (TAMA project)

Overview of this talk

- Introduction of TAMA300

 a 300-m Fabry-Perot Michelson interferometer
 8 observations in past
- The 6th observation: Data Taking 6 The observation for 50 days in the summber of 2001 Analyses of the 1038-hours data
- The 8th observation: Data Taking 8 (= LIGO S2)

LIGO-TAMA joint observation for 2 months Detector development for DT8 Operational status

Overview of this talk

Introduction of TAMA300

a 300-m Fabry-Perot Michelson interferometer 8 observations in past

- The 6th observation: Data Taking 6 The observation for 50 days in the summber of 2001 Analyses of the 1038-hours data
- The 8th observation: Data Taking 8 (= LIGO S2)

LIGO-TAMA joint observation for 2 months Detector development for DT8 Operational status

TAMA300

• Laser interferometric GW detector with arm length of 300m

Site: National Astronomical Observatory of Japan, (Mitaka, Tokyo)

• Object of the project

To develop a detector capable to detect GW events in nearby galaxies. To establish techniques for a future km-class interferometer

Designed sensitivity ~ $h_{\text{RMS}} = 3 \times 10^{-21} \text{ @}300 \text{Hz} \text{ (BW300 Hz)}$

Bird's view of the TAMA site

• National Astronomical Observatory of Japan **Tokyo, Mitaka Campus** (E139.32.21 N35.40.25)

Center Room

South End Room

End

Middle of a city area ~ heavy traffic

TAMA300 detector ~ overview

300m vacuum tube

Vibration Isolation System

• 3 layer system Actively-controlled air spring **Stack** (Sandwitches of rubbers and metal blocks) Double pendulum suspension

Achieved performance ~ better than 10⁻⁸ at 150Hz

Mirror

• Fused silica (SiO₂) ϕ 100mm x 60mm

Mechanical quality Intrinsic Q $\sim 3 \times 10^{6}$

Optical quality substrate absorption

substrate absorption 3ppm/cm total loss in reflection 30ppm figure error $<\lambda/40$ surface roughness <1 Å

o Analog servo circuits for the most systems
 o Digital control/switching capability
 of the analog circuits for automatic lock
 o Several digital servos

Data Acquisition System

History of TAMA development

Data taking (DT) runs in past

6 observations without power recycling 2 observations with power recycling [Without power recycling]

DT1	1999 Aug.	6~ 7	1 night	11 hours			
DT2	1999 Sep.	17~20	3 nights	31 hours			
DT3	2000 Apr.	20~23	3 nights	13 hours			
DT4	2000 Aug.	21~Sep. 4	13 nights	167 hours			
DT5	2001 Mar.	2~ 8	6 days	111 hours			
DT6	2001 Aug.	1~Sep. 20	50 days	1038 hours	LISM(20m		
[With power recycling]							
DT7	2002 Aug,	31~Sep. 2	1 day	25 hours	LIGO & GE		
DT8	2003 Feb.	14~Apr. 15	59 days	1158 hours	LIGO		

Overview of this talk

Introduction of TAMA300 a 300-m Fabry-Perot Michelson interferometer 8 observations in past

The 6th observation: Data Taking 6 The observation for 50 days in the summber of 2001 Analyses of the 1038-hours data

• The 8th observation: Data Taking 8 (= LIGO S2)

LIGO-TAMA joint observation for 2 months Detector development for DT8 Operational status

Interferometer on DT6

- DT6 ~ 50 days run (2001/8/1~9/20)
- IFO configuration: Fabry-Perot Michelson (w/o power recycling)
- Enough sensitivity to detect Galactic merger events Enough stability for long term operation

 \sim high duty ratio, auto lock-acquisition

 Total lock time
 1107 h
 (92.3%)

 Total obs. data (excl. after-lock adj.)
 1038 h
 (86.5%)

300m

FP cavity

Sensitivity of IFO at DT6

• Displacement noise $dx = 1.5 \times 10^{-18} \text{ m/Hz}^{1/2}$ (@700Hz) Strain sensitivity h = dx/300 $= 5 \times 10^{-21} / \text{Hz}^{1/2}$

Binary Range: 33kpc

(Distance to observe NS inspirals with SNR=10)

DT6 data analysis

• Binary inspiral search

Matched filtering search (1~2Msolar)

Coincidence analysis

between TAMA and LISM20m (1~2Msolar)

• Burst search

Non-Gaussianity detection using higher-order stat.

• Periodic GW search

Possible GW wave from SN1987a (@~935Hz)

GW search: compact binary inspirals

Matched filtering analysis Upper limit to the galactic event rate:

Revent [/h]	Revent [/y]	Dobs Tobs
DT2: 0.59 /h	=5.2x10 ³ /year	3.4kpc 31h
DT4: 0.027 /h	=2.4x10 ² /year	17.9kpc 167h
DT6: 0.0095/h	=8.3x10 ¹ /year	33.1kpc 1038h

Matched Filtering analysis

- Detector outputs: s(t) = Ah(t) + n(t)h(t): known gravitational waveform (2.5PN template) n(t): noise.
- Correlation of the detector output and the template in the frequency domain:

$$\rho(m_1, m_2, t_c, \dots) = 2 \int \frac{\widetilde{s}(f) \widetilde{h}^*(f)}{S_n(f)} df$$

- Weighted by $S_n(f)$ noise spectrum density
- Signal to noise ratio SNR = $\rho / \sqrt{2}$
- Find the optimal parameters m_1, m_2, t_c, \dots in a data chunk which maximizes ρ

Divide frequency region into bins.

Test whether the contribution to r from each bins agree with that expected from chirp signal

$$\boldsymbol{r} \equiv (s,h) \left(= 2 \int \frac{\tilde{s}(f)\tilde{h}^*(f)}{S_{n}(f)} df \right)$$

$$\boldsymbol{c}^{2} \equiv \sum_{i} \frac{1}{\boldsymbol{s}_{i}^{2}} (\boldsymbol{r}_{i} - \overline{\boldsymbol{r}}_{i})^{2}$$
$$\boldsymbol{s}_{i}^{2} \equiv \left\langle (\boldsymbol{r}_{i} - \overline{\boldsymbol{r}}_{i})^{2} \right\rangle, \quad \overline{\boldsymbol{r}}_{i} = \left\langle \boldsymbol{r}_{i} \right\rangle$$

Performance of $r/\sqrt{c^2}$ selection

Upper limit to the Galactic event rate

threshold=16 (~S/N=11) (fake event rate=0.8/year)

Efficiency for Galactic events $\varepsilon = 0.23$ (from simulation)

•We also obtain upper limit to the average number of events over threshold by standard poisson statistics analysis

➡ N=2.3 (C.L.=90%)

•Data length used : T = 1039 hours

Upper limit to the Galactic event rate = $\frac{N}{T\varepsilon}$ =0.0095 [1/hour] (C.L.=90%)

Location of TAMA and LISM

	orientation	latitude	longitude
TAMA	225 °	35.68 ° N	139.54 ° E
LISM	165 °	36.25 ° N	137.18 ° E

- Distance between TAMA and LISM ~ 220km
- Maximum delay of signal arrival time ~ 0.73msec
- Relation between TAMA and LISM arms direction

Results of coincident event search

Results of coincident event search

Coincident event search upper limit (4)

From above figure, we set threshold for each detector, TAMA threshold : $\rho_{tama} / \sqrt{\chi^2_{tama}} = 6.2$ LISM threshold : $\rho_{lism} / \sqrt{\chi^2_{lism}} = 5.3$ Observed number of events over threshold: Nobs=0 Expected number of fake events over threshold : N_{bg} =0.72

We can obtain the average number of events over threshold N=2.3 (C.L.=90%)

- The second, we evaluated **detection efficiency** we performed a Galactic event simulation (within 1kpc). Setting above thresholds, we can obtain the probability that we observe events over the each detector's threshold (namely detection efficiency) $\implies = 0.22$
- Length of data : T=244 hours

TAMA + LISM case Upper limit to the Galactic (within 1kpc) event rate : N/T = 0.042 events/hour (C.L. 90%) Burst wave analysis (2) --- Reduction of non-stationary noise ---

Non-Gaussian noise reduction

Distinguish GW signal from non-Gaussian noises

with time-scale of the 'unusual signals'

GW from gravitational core collapse < 100 msec,

Noise caused by IFO instability > a few sec

Averaged noise power

• 2nd-order moment of noise power

Estimate parameter : 'GW likelihood'

Reduce non-stationary and non-Gaussian noises without rejecting GW signals

Burst wave analysis (3) --- Data processing ---

Data Processing

- 1. Calculate Spectrogram by FFT
- 2. Extract a certain time-frequency region to be evaluated
- 3. Evaluate GW likelihood at each frequency
- 4. Reject given time region if it has large 'non-GW like' ratio
- 5. Calculate total power for given T-F region

• 'Filter' outputs

Survived ---- Stable detector operation Data may be used for GW search Large power : event candidates Rejected ---- Detector instability Detector 'dead time'

Burst wave analysis (4) --- DT6 data analysis ---

Continuous wave from SN1987A

Target: possible SN1987a remnant

(Middleditch, et al. New Astronomy, 5 (2000) 243)

o Expected Waveform: Sinusoidal (f=934.908Hz +/- 0.05Hz)

- + time dependence of the sensitivity
- + doppler correction

(the earth's daily/yearly round)

+ spindown correction

(assume spindown rate: 2~3x10⁻¹⁰ [Hz/s])

o Search result: DT6 50days data

Time-domain search: Frequency domain search:

(h_{upperlimit} from the spindown:

$$h=3.8 \times 10^{-23}$$
 (For the second state of t

(False Alarm:1.8%) (False Alarm:1.8%)

Overview of this talk

- Introduction of TAMA300

 a 300-m Fabry-Perot Michelson interferometer
 8 observations in past
- The 6th observation: Data Taking 6 The observation for 50 days in the summber of 2001 Analyses of the 1038-hours data

The 8th observation: Data Taking 8 (= LIGO S2)

LIGO-TAMA joint observation for 2 months Detector development for DT8 Operational status

Data Taking 8 (LIGO S2)

• DT8 ~ 2 months run (2003/2/14~4/15)

First full-time joint observation with LIGO S2

(c.f. DT7: partial participation of TAMA to S1)

First long-term observation with power recycling

Power recycling of TAMA300 (2001/10~Present)

Power recycling gain of 4.5

```
Best sensitivity: 2.7 \times 10^{-21} [/Hz<sup>1/2</sup>]
```

IFO operation

Accumulated data: 1158 hours

Duty cycle: 81.3 %

Longest lock: 20.5 hours

Principle of power recycling

• Laser light is enclosed in the interferometer

DT8 ~ IFO development

Fitting the IFO for DT8

Sensitivity

>> Improvement of the detection noise/shot noise level by power recycling >> Reduction of the frequency noise

Stability

>> Automatic lock system

>> Automatic alignment control for 4 test masses, recycling mirror, and the mode cleaner mirrors >> Optical axis control

Automatic lock acquisition

Self-switching sub-systems (Laser&MC)

MC frequency stabilization MC alignment control Laser intensity stabilization Optical axis control Injection lock servo of the laser

Digital switching using PC and Labview

Lock acquisition Manual mirror alignment IFO Status monitoring

Hardware: PC + DAQ board Software: National Instruments LabVIEW

Alignment control

Alignment control servo for the recycling mirror

Mechanical modulation technique (Pitch 60Hz, Yaw 70Hz) Suppress long-term drift => bandwidth < 1Hz => All of the five mirrors are controlled

Stabilizing optical axes

=> Minimizing the alignment noise coupling to dL-.

=> Improvement of the long-term stability of the main IFO, as well as the long-term stability of the MC.

Improved long-term stability

Longest lock stretch in the observations

Hour

Frequency Stabilization

Common-mode servo (20kHz -> 40kHz)

Sensitivty @ DT8

Displacement noise level of TAMA300

Observable distance with SNR=10

Deterioration for 10-10Msolar caused by wideband alignment filters

Estimation of noise contributions

Noise estimation based on signal injection

Displacement noise level of TAMA300

Frequency [Hz]

Observation calendar

• 1157h51m (out of 1424 hours, duty cycle 81.3%)

Duty cycle

DT8 ~ **Disturbance** by construction

н

ш

١Ħ

U ١đ

ψ

11th May, 2003 (Tue)

(Quiet weekday)

13rd May, 2003 (Thu)

(Noisy weekday) 15:00 21:00 B 00:00 03:00 06:00 15:00 18:00 12:00 09:00 0.03 0.025 0 0.02 0 0.015 ε 0.0 0.005 Ű) 06:00 и9:ий 12:00 15:00 18:00 00:00

Tue Mar 11 23 59 53 2003

TAMA-LSC working group

Concluded the MOU between TAMA and LSC

at GWDAW 2002 in Kyoto

Discussions for the joint data analysis are now underway!

WG members

- Masaki Ando (University of Tokyo)
- Patrick Brady (University of Wisconsin-Milwaukee)
- Sam Finn (Pennsylvania State University)
- Nobuyuki Kanda (Osaka City University)
- Erik Katsavounidis (MIT)
- Albert Lazzarini (Caltech)
- Hideyuki Tagoshi (Osaka University)
- Ryutaro Takahashi (National Astronomical Observatory of Japan)
- Daisuke Tatsumi (National Astronomical Observatory of Japan)
- Peter Saulson (Syracuse University)

The photograph excerpted from LIGO News

Future Plan

Data Analysis of the DT8 data In progress

• **IFO: sufficient stability for long-term obs.** Concentrate on the noise issues

 Further automation of the observation
 To operate the interferometer with less numbers of the interferometer experts on the observations

Ultimately toward a contiunuous observation

Summary

- Interferometric GW detector TAMA300
 Data Analysis using DT6 data
 - Binary ispirals:R_event<0.0095/hr
coincident search with LISM20mBurst search:Reduction of the IFO related noise
R_event<0.01/hr for hrms=3x10^{-17}</th>CW search:Possible 1987A pulsar ~935Hz

Possible 1987A pulsar ~935Hz h<4x10⁻²³

Data Taking 8
 Full-time observation with LIGO S2
 Power recycling

Improvement of the sensitivity

 $h = 2.7 \times 10^{-21} / \text{sqrtHz} @1.5 \text{kHz}$ 1158 hours of 1424 hours => duty cycle 81.3%