Workshop of Optical Coatings in Precision Measurementの報告

Max-Planck Institute 山元 一広

2008/4/4 重力波研究交流会

Optical coating: 精密光学実験の要

質の高い光学的性質

高反射率、低損失(吸収、散乱)、小さい形状誤差、などなど 小さい機械的散逸:熱雑音

重力波検出だけでなく周波数安定化、量子光学に波及

Optical coatingだけをkey wordにworkshop開催

場所:California Institute of Technology 日時:3/20(午後)-21 LIGO-VIRGO joint meeting 3/17-20(午前)

日本人参加者(敬称略):黒田、山本(博)、川村、山元(一)

Organizer: Gregg Harry (MIT) 詳細、スライド、参考文献は http://www.ligo.mit.edu/~gharry/workshop/workshop.html

Room201 (Bridge)

セッション

Overview Modeling and theory Thermal noise Scatter and optical loss Absorption and thermal issues

Tours of Caltech labs

Overviewのみ20分(+10分)、他は15分(+5分)

4

Ion Beam Sputtering (Ramin Lalezani)

Gravitational Wave Detection (Steve Penn)

Quantum Optics (Markus Aspelmeyer) micro mechanical oscillatorとcoatingについて

Laser Frequency Stabilization (Michael Martin)

Modeling and Theory

Interferometer with insensitive to thermal noise Optimization of coating layer thickness Larger beam Laser frequency stabilization Scattering

Thermal noise

Review (Gregg Harry)

Mechanical loss of silica/alumina coating

Mechanical loss at low temperature

Radiation pressure experiment (MIT)

Optimized coating in Thermal noise interferometer (Caltech)

Thermal noise interferometer with thin disk (Perugia)

Calculation of elasticity of Ta₂O₅

Thermo-optic noise

Mesa beam experiment

Bench 7.0 (software to calculate interferometer sensitivity)

Absorption measurement

Scatter and optical loss Absorption and thermal issues

Advanced LIGO目指して

Measurement of scatter, absorption, transmittance (doped coating)

Thermal compensation Effect of ultraviolet ray irradiation High power damage

低温におけるcoating mechanical loss

Kazuhiro Yamamoto : Review

lain Martin (Glasgow) : SiO₂ and Ta₂O₅

Eleanor Chalkley (Glasgow) : HfO₂

2. Studies in Past

2-1. Measurement of coating mechanical loss

- **3** experiments (in refereed journal)
 - (1) University of Tokyo K. Yamamoto et al., Physical Review D 74 (2006) 022002 First measurement
 - (2) Friedrich-Schiller-University Jena R. Nawrodt et al., New Journal of Physics 9 (2007) 225 Coating on grating
 - (3) University of Glasgow I. Martin et al., Classical and Quantum Gravity 25 (2008) 055005 TiO₂ doping

K. Yamamoto's slide

K. Yamamoto's slide (1)University of Tokyo

K. Yamamoto et al., Physical Review D 74 (2006) 022002

First measurement

(2) Friedrich-Schiller-University Jena R. Nawrodt et al., New Journal of Physics 9 (2007) 225 SiO₂/Ta₂O₅ coating on grating

K. Yamamoto's slide

(3) University of Glasgow I. Martin et al., Classical and Quantum Gravity 25 (2008) 055005 Ta₂O₅ doped with TiO₂ (and his talk)

Figure 4. Tem perature dependence of the loss of the doped Ta₂O $_5$ coating.

K. Yamamoto's slide

Comparison of SiO₂ and Ta₂O₅

I.Martin

s slide 14

UNIVERSITY of

GLASGOW

Comparison to multilayer results of Yamamoto et al

- Loss of single SiO₂ and Ta₂O₅ layers used to calculate loss in a 31 layer multilayer coating, as measured by Yamamoto et al^{*}
- Yamamoto's results:
 - Show no evidence of a large peak^{1.0x10³} at 20 K
 - Are not inconsistent with a peak 8.0x10⁴. at slightly higher T, with T_{peak} Mechanical loss possibly lowered by annealing
- Apparent discrepancy in results could be explained by:
 - Differences in annealing temperature and / or coating layer thickness?
 - Different coating thermoelastic loss between coatings on sapphire and silicon substrates
 - Not enough data for multilayer coating

Calculated multilayer coating loss at 1 kHz compared to Yamamoto's measured multilayer

^{*}Yamamoto et al., Phys. Rev. D 74, 022002 (2006)

loss at 1.1 kHz

Plot showing coating loss for all modes studied

