宇宙重力波検出器用レーザー光源の 光ファイバーを用いた安定化

高橋 走,安東 正樹,坪野 公夫 東京大学 理学系研究科 物理学専攻

目標値には届いていないが、どちらも期待の持てる値

ベストは、4×10⁻⁸/Hz^{1/2}@1kHz(強度)、5Hz/Hz^{1/2}@80Hz(周波数)

1. イントロダクション 1.1 DECIGO	
1.2 光源のノイズと干渉計	
1.3 自由空間と光ファイバー	
2. 装置	
3. 結果	
4. まとめ・課題	

1.1 DECIGO

Deci-hertz Interferometer Gravitational Wave Observatory

1.3 自由空間と光ファイバー

1. イントロダクション

2.1 強度安定化2.2 周波数安定化2.3 安定度の評価2.4 光学系の構成

3. 実験結果

4. まとめ・課題

2.5 マッチングジェル(屈折率整合材)
2.6 非対称Michelson干渉計
2.7 サスペンション
2.8 装置全体写真

2.1 強度安定化

PD

2.2 周波数安定化

● 非対称Michelson干渉計の応答は $E_{in} = E_0 e^{i(\Omega t + \phi(t))}$ ↓ $P_A + P_B + P \cos \Delta \phi$

● 干渉計をミッドフリンジにロックすると $|P_{sig}(\omega)| = 2\pi P \frac{2\Delta l}{c} |\nu(\omega)|$

2007年12月7日

重力波研究交流会@東京大学

2.3 安定度の評価

●安定度評価用の非対称Michelson干渉計は 動作点ロックのためにPZTを用いた光路長制御を行っている

2.4 光学系の構成

Laser power, 10mW; Shot noise limit of IMS, $3.7 \times 10^{-8}/Hz^{1/2}$

2.6 非対称Michelson干涉計

- @ 鏡もファイバーに直接接着
- ファイバーはアルミのボビンに巻いてある

2007年12月7日

重力波研究交流会@東京大学

非対称Michelson干渉計を安定にロックする必要がある

● サスペンション
● 2段振り子
● Eddy current damping
● 全体を真空槽に(~10Pa)

2007年12月7日

重力波研究交流会@東京大学

4.1 まとめ・課題

● 光ファイバーを用いたレーザーの安定化を行った
 ● 制御の結果

❷課題

- AOMドライバのノイズ実測
- ●非対称Michelsonの作り方次第で、より振動に鈍感な装置ができるはず
- ●より静かな環境での測定
- 温度安定化が必要か?

2.3 構成要素(1)

光源

DFBファイバーレーザー (KOHERAS社) 出力:10mW

波長:1550nm, 線幅:<23kHz 波長可変幅:30pm(PZTへ入力) 温度依存性:13pm/K

強度変調器 (AOM) ファイバーカップルタイプ (BRIMROSE社) RF周波数 : 55MHz 1次光を使用 回折効率: 80% (スペック値) 最大透過率 : 70% (実測値)

Photo detector

Isolator Beam splitter

2007年12月7日

重力波研究

●各回路素子をつなぐコネクタを無くし、
 ●自由保持だった100mファイバを
 接着剤で固定
 ■手巻だったファイバーコイルを外注に

_IF1

3.2 強度安定化のノイズ

重力波研究交流会@東京大学

重力波研究交流会@東京大学

周波数安定度の履歴

21

- •10Hz~100Hzにかけての 大きなノイズが消えた
- •1Hz周辺に共振とみられ るピーク
- •10m→110mでの大きな違いは見られない

3.4 周波数安定化結果(2)

