Fiber ring cavity for frequency stabilization of master laser of iKAGRA

6th Japan-Korea Workshop on KAGRA

Tai Hyun Yoon

ICRR Visiting Professor - June 20 – Aug. 20, 2013

- June 18 – Aug. 19, 2014

Required Main Laser Parameters

Wave length	1064 nm	
Power	180 W	
Oscillation mode	Single (longitudinal and	
	transversal)	
Polarization	Linear	
Line-width	< a few kHz	
Frequency noise	$100 \text{Hz} / \sqrt{\text{Hz}}$ at 100 Hz	
Frequency Control band-width	>800 kHz with an external EOM	
Intensity noise (RIN)	$10^{-4}\sqrt{\text{Hz}}$ at 100 Hz	
$\frac{\Delta L}{L} = -\frac{\Delta f}{f} = \frac{100}{3 \times 10^{14}} = 3 \times 10^{-13} \text{ at } 100 \text{ Hz}$		

 $\Delta L = 3 \times 10^{-19}$ m at 100 Hz

2

KAGRA Input Optics

Fabry-Perot Cavity: $v\lambda = c$ **Frequency standard (v)** \rightarrow displacement ΔL

 δf

 $q = \frac{c / \lambda}{f_{FSR}} = 280\ 112$

 $\frac{\delta f}{f} = \frac{49 \text{ mHz}}{c / \lambda} = 2.4 \times 10^{-16}$

$$v_q = q \times \frac{c}{2L}; \ q = 10^6 \sim 10^6, \text{ integer}$$

$$\frac{\delta v_q}{v_q} = -\frac{\delta L}{L} = -h$$
F-P Cavity Airy Function
$$\int I(v) = \frac{I_{\text{max}}}{1 + \left(\frac{\pi F}{4}\right)^2 \sin^2\left(\frac{\pi v}{f_{FSR}}\right)}$$

$$f_{FSR} = \frac{c}{2L} = 714 \text{ MHz}$$

$$\delta f = 49 \text{ mHz}$$

$$\tilde{g}_{100}^{100} = \frac{1}{5} \frac{100}{10} \frac{15}{10} \frac{100}{15} \frac{100}{20} \frac{100}{25} \frac$$

bectrum (a.u.) E 0.8 0.8 0.4 0.4

Power : 0.2 0.0

-0.6

-0.4

-0.2

Time (s)

0.0

Optical frequency (Hz)

(49 ± 4) mHz

0.2

0.4

0.6

4

Ye, Nature Photonics, 2012

$$L = 210 \text{ mm}$$

 $Q = 4 \times 10^{15}$
 $F = 240\ 000$
 $\tau = \frac{F/\pi}{c/2L} = 0.1 \text{ ms}$

iKAGRA Input Optics Layout

iLIGO Pre-stabilized Laser (PSL)

Technical Note	LIGO-T990025-00-D	03/08/99
-----------------------	-------------------	----------

(Infrared) Pre-stabilized Laser (PSL) Final Design

R. Abbott, P. King

iLIGO PSL includes;

- 1. LIGO 10 W laser, called 126 MOPA laser by Lightwave Electronics with power supply and recirculating water chiller
- 2. Frequency stabilization electronics
- 3. Intensity stabilization electronics
- 4. Various optics and optical component mounting hardware
- 5. Optical table and optical table enclosure
- 6. It does not include any optics for the IOO or electronics for modulation frequencies used outside the PSL system

Fiber Ring Cavity (FRC)

Ref. "All-single-mode fiber resonator", L.F. Stokes, et al., Opt. Lett. 7, 288 (1982).

FRC design parameter

FRC simulation

Finesse 1000 Experiment FRC2

FRC fabrication

 $r \approx 0.0023$ Finesse ≈ 500

OPNETI Single Mode Standard Coupler (99.8 % : 0.2 %) Courtesy of fiber splicer Prof. Kobayashi, ISSP

FRC fabrication

1st Fiber Ring Cavity

Splicing Loss : 0.01 dB, $a \cong 0.0023$ OPNETI SM Coupler (99.8 % : 0.2 %) 2nd Fiber Ring Cavity

Splicing Loss : 0.00 dB, *a* < 0.0012 Gooch & Housego SM Coupler (99.999 % : 0.001 %)

Fiber Splicer : Micro core - DCM Fusion Splicer Type-39

FRC Specifications

PDH Frequency Stabilization of Nd:YAG NPRO MOPA for iKAGRA

Finesse measurement

Finesse \cong 500

PDH error signal

Thermal frequency scanning; nonlinear

 $f_{EOM} = 15 \text{ MHz}$

Linewidth < 100 kHz

Finesse \cong 1000

Frequency stabilization of NPRO

Stabilized in-loop error signal

160 Hz with 1 Hz LPF

5.4 kHz without LPF

FRC fabrication: Final design for iKAGRA

3rd Fiber Ring Cavity

Splicing Loss : 0.01 dB, $a \cong 0.0023$ Gooch & Housego SM Coupler (99.9 % : 0.1 %) Reducing line-width 3times

 $f_{FSR} = 35 \text{ MHz}$ $\Delta v = 80 \text{ kHz}$ Finesse = 540 Contrast: 27 %

Results

- We have fabricated two fiber ring cavities with $\kappa = 10^{-3}$ and 10^{-5} with measured free spectral range of 100 MHz and finesse of 500 and 1000, respectively.
- Frequency of a NPRO Nd:YAG laser at 1064 nm is stabilized by PDH method to FRC1
- Will compare long-term frequency stability of two systems by using an AOM
- Hopefully, these FRCs can be used for laser frequency stabilization of iKAGRA lasers, e.g., master NPRO, etc.

Line-width measurement of FRC-stabilized NPRO: Plan

