Black Hole Binaries with Advanced Detectors

Hyung Mok Lee & Chunglee Kim Seoul National University

The 6th Korea-Japan Workshop on KAGRA June 20-21, 2014 @ NAOJ

Current status of estimation: enormous uncertainty

	Ń	Ņ	Ņhigh	Nmax	
	(yr	(yr	(yr	(yr	
NS-NS	0.4	40	400	1000	
NS-BH	0.2	10	300		
BH-BH	0.4	20	1000		
IMRI into IMBH			10	300	
IMBH-IMBH			0.1	1	

Abadie et al. 2010 ("Rate" paper by LIGO Scientific Collaboration)

How compact binaries are produced?

- Evolution of primordial binaries
 - Each component has to be massive
 - Should be proportional to the number of stars
- Dynamical Formation: <u>More sensitive to density than the</u> total amount of stars
 - 3-body processes
 - Globular Clusters: Banerjee et al., 2010; Bae et al. 2014, MNRAS in press; Kim et al., 2014, in preparation
 - Capture by gravitational radiation (2-body processes)
 - Nuclear Clusters: O'Leary et al. 2009; Hong & Lee 2014, in prep.

Binary interaction with others

- Binaries become tighter as a result of interaction
 - Endothermic, and provides recoil energy
- Ejection occurs when recoil energy is greater than escape energy:

$$a \lesssim a_{crit} = \frac{Gm}{15v_{esc}^2}$$

• The distribution of eccentricity: *f(e)de = 2e de*.

Evolution of binary parameters: example

№£20,000, NS=140 BH=60

Summary of Simulations

- Almost all black holes evaporate in short time, and neutron stars escape from GCs later.
- 30% of these objects are in the form of compact binaries (BH-BH or NS-NS). The number of ejected binaries is 15% of the total.
- BH-NS binaries are very rare
- The presence of primordial binaries does not change the results, since they are easily destroyed (but it depends on the binary parameters)

Estimation of merger rate

- We assume the following number fractions
 - \cdot 0.5 % NS (but 10% of this remains)
 - 0.01 % in BH
- 15% of these objects escape in the form of compact binaries
- We used 142 clusters in the catalogue by Harris (2010) with mass and velocity dispersion http://physwww.mcmaster.ca/~harris/Databases.html
 - We computed the number of binaries whose merging time is shorter than Hubble time for each cluster and add them up
- Results (uncertainties from retention rate [~4], and surviving GC population [~2], etc.)
 - NS-NS: 0.05 0.5 / Myr NS-NS ➡ 0.01- 0.1 / yr (cf. field pop. ~40 / yr)
 - BH-BH 0.03 0.25 Myr ➡ 8 60 /yr (cf. field pop. ~ 20 /yr)

Other properties

- We do not expect any merger inside the cluster
- Relative velocity to the host cluster
 - 1.8 $v_{\rm esc}$ for NS-NS binaries
 - 1.4 $v_{\rm esc}$ for BH-BH binaries
 - Offset from the home cluster could be more than 10 kpc when they merge.
 - Many SGRB seem to be present in the outer parts of galaxies
- Ellipticals have higher SN, and could be better places for these populations

Nuclear Star Clusters (NCs)

- The densest stellar system
 n ~ 10⁵ M_☉ pc⁻³ (Schodel et al. 2009)
- SMBH at the center
 - e.g., Sgr A* in the Milky Way
 - M(SgrA*)~3-4 x $10^{6}M_{\odot}$
 - Produces the central cusp

Hubble image of the Sagittarius star cloud

GW Sources in Nuclear Clusters

- Extreme mass ratio inspirals (EMRI)
 - Lightman & Shapiro (1977); Hopman & Alexander (2003, 2005, 2006); Merritt et al. (2011)
 - Compact stars spiraling in the massive black hole
 - \cdot low frequency
- Stellar mass black holes binaries (BH-BH, $\sim 10 M_{\odot}$)
 - Can be formed by gravitational radiation capture (Hansen 1972; Quinlan & Shapiro 1987, 1989)
 - Cusp around supermassive black hole provides favorable environment for the capture
 - 1~10% SBHs in galactic nuclei (Hopman & Alexander 2006b) due to mass segregation
 - Initially 0.1% of BHs (Alexander 2005)

N-body Realizations

- Stellar cusp (Bahcall & Wolf 1976) $\cdot \varrho(r < r_{inf}) \sim r^{-1.75}$
- Keplerian velocity dispersion near MBH
 - · $\sigma(r < r_{inf}) \sim r^{-0.5}$
- Nearly isothermal velocity dispersion at r>r_{inf}
- Velocity dispersion bump at r~40 r_{inf} due to the external potential well

Distribution of a and e

• Parabolic approximation and equal mass (Quinlan & Shapiro 1987, 1989)

$$\Delta E = -\frac{85\pi G^{7/2} m^{9/2}}{12c^5 r_p^{7/2}} \quad r_{p,max} = \left(\frac{85\pi}{6}\right)^{2/7} \frac{Gm}{c^{10/7} v_{\infty}^{4/7}} \approx \frac{3Gm}{c^{10/7} v_{\infty}^{4/7}}$$

- $r_p / r_{p,max}$: uniform distribution
- v_{∞} : 1D Gaussian distribution

Before capture

$$\begin{aligned} a &= \frac{Gm}{v_{\infty}^2} \\ e &\approx 3 \left(\frac{v_{\infty}}{c}\right)^{10/7} \left(\frac{r_p}{r_{p,max}}\right) + 1 \end{aligned}$$

$$a' = \frac{Gm}{v_{\infty}^2} \left(\left(\frac{r_{p,max}}{r_p}\right)^{7/2} - 1 \right)^{-1}$$
$$e' \approx 1 - 3 \left(\frac{v_{\infty}}{c}\right)^{10/7} \frac{r_p}{r_{p,max}} \left(\left(\frac{r_{p,max}}{r_p}\right)^{7/2} - 1 \right)$$

June 21, 2014

Orbital evolution and waveforms

14

- Precession should be taken into account for the calculation of the merging time.
- Binaries remain eccentric until they enter LIGO/Virgo band.
 - Waveforms are different from circular binaries

Expected Detection Rates for Adv. LIGO

Models	$M_{\rm MBH}/M_{\rm cl}$	$\Gamma_{\rm mer,MW}$	$\mathcal{M}^a_{ m BH}$	$D_{\rm h}$	$\mathcal{R}^b_{ ext{det,l}}$	$\mathcal{R}^{c}_{\mathrm{det,re}}$	$\mathcal{R}^d_{ ext{det,h}}$
		$({ m Myr}^{-1})$		(Mpc)	$({\rm yr}^{-1})$	$({ m yr}^{-1})$	$\left(\mathrm{yr}^{-1} \right)$
1-4	0.2	$3.33 imes 10^{-4}$	0.44	986^{e}	0.06	0.44	2.99
				${\sim}1100^{f}$	0.09	0.64	4.32
				${\sim}1900^g$	0.27	2.00	13.5
5-7	0.1	$1.39 imes 10^{-4}$	0.44	986^{e}	0.02	0.19	1.25
				${\sim}1100^{f}$	0.04	0.27	1.80
				${\sim}1900^g$	0.11	0.83	5.62

e: Abadie et al. 2010, SNR=8 *f*: Baker et al. 2007, SNR=10 *g*: Reiswig et al. 2009, SNR=8

• BH-BH Detection rates: 0.02-10 yr -1

- 1-100 yr -1 (Fokker-Planck simulations for Galactic nuclei; O'Leary et al. 2009)
 - c.f. 1-2 yr -1 (field population synthesis; Belczynski et al. 2007, higher values in more recent works), 15-40 yr-1 (dynamical formation and hardening in GC)

Summary

- Globular Clusters
 - Both NS-NS and BH-BH binaries can be formed by three-body processes
 - They will become mergers well outside of the cluster (and halo)
 - NS-NS contribution may be smaller than disk populations, but BH-BH could be similar (or larger)
- Nuclear Clusters
 - BH-BH binaries are likely to be formed by capture process
 - They become mergers in very short time (days to a 1000s years)
 - They will remain eccentric until they enter LIGO/VIRGO bands
 - Rate is uncertain, but likely to be much smaller than disk/ globular cluster contribution (< 1 per year)