

Advanced Virgo Status

Matteo Barsuglia (Astroparticule et Cosmologie – CNRS) On behalf of the Virgo Collabration

Advanced Virgo

- Advanced Virgo (AdV): upgrade of the Virgo interferometric detector of gravitational waves
- Participated by scientists from Italy and France (former founders of Virgo), The Netherlands, Poland and Hungary
- Funding approved in Dec 2009 (23.8 ME)
- Construction in progress. End of installation: fall 2015
- First science data in 2016

5 European countries 19 labs, ~200 authors

APC Paris **ARTEMIS Nice** EGO Cascina **INFN** Firenze-Urbino **INFN** Genova **INFN** Napoli **INFN** Perugia **INFN** Pisa **INFN Roma La Sapienza** INFN Roma Tor Vergata INFN Trento-Padova LAL Orsay - ESPCI Paris LAPP Annecy **LKB** Paris LMA Lyon NIKHEÉ Amsterdam POLGRAW (Poland) RADBOUD Uni. Nijmegen **RMKI** Budapest

Noise budget

Optical scheme

- Dual recycled Fabry-Perot Michelson
- Bi-concave arm-cavities
- Marginally stable recycling cavities
- Compensation plates
- Pick-off plate for ITF control

Advanced Virgo main Optical parameters			
Light Power			
arm cavity power	$650\mathrm{kW}$	power on BS	$4.9\mathrm{kW}$
Arm cavity geometry			
cavity length L	$2999.8\mathrm{m}$		
IM R_C	$1420\mathrm{m}$	EM R_C	$1683\mathrm{m}$
Beam size on IM w	$48.7\mathrm{mm}$	Beam size on EM w	$58.0\mathrm{mm}$
waist size w_0	$9.69\mathrm{mm}$	waist position z	1363 m
Arm cavity finesse			
finesse	443	round-trip losses	$75\mathrm{ppm}$
transmission IM T	1.4%	transmission EM T	1 ppm
Power recycling			
transmission PRM T	5%	recycling gain	37.5
PRC length	$11.952\mathrm{m}$	Beam size on PRM	49.1 (TBC) mm
Signal recycling			
transmission SRM T	20%	finesse	26
SRC length	$11.952\mathrm{m}$	SRM tuning	0.35 rad
Mirrors			
IM diameter	$35\mathrm{cm}$	EM diameter	$35\mathrm{cm}$
IM thickness	20 cm	EM thickness	$20\mathrm{cm}$

- Larger beam (thermal noise)
- Higher quality optics (thermal noise, quantum noise)
- Heavier mirrors (thermal noise, quantum noise)
- 200W fiber laser
- thermal control of aberrations
- signal recycling
- Improvement in the suspension lower stage
- Suspended and under vacuum auxiliary benches
- Baffles

Coating thermal noise

First map of test masses

- Larger beams
- Higher quality optics
- Heavier mirrors
- 200W fiber laser (quantum noise)
- thermal control of aberrations (quantum noise)
- signal recycling (quantum noise)
- Improvement in the suspension lower stage
- Suspended and under vacuum auxiliary benches

- Baffles

2015 configuration

- Start in 2015 with a simplified configuration: likely to reduce commissioning time
 - No signal recycling (reduce locking complexity)
 - Virgo+ laser (up to 60W)
 - Low power (reduce risks with thermal effects and high power laser)
- Target BNS inspiral range: >100 Mpc

- Larger beam
- Higher quality optics
- Heavier mirrors
- thermal control of aberrations
- 200W fiber laser
- signal recycling
- Improvement in the suspension lower stage (thermal noise, suspend CP/ baffles)
- Suspended and under vacuum auxiliary benches

- Baffles

BS payload installation in July 2014

First test mass Dec 2014

- Larger beam
- Higher quality optics
- Heavier mirrors
- thermal control of aberrations
- 200W fiber laser
- signal recycling
- Improvement in the suspension lower stage
- Suspended and under vacuum auxiliary benches (backscattering)
- Baffles (backscattering)

Backscattering

- Better optics quality
- Baffles to shield mirrors, pipes, vacuum chambers exposed to scattered light
- Photodiodes suspended in vacuum to isolate them from acoustic/ seismic noise
- If required, control the position of the benches wrt the interferometer

Benches under vacuum

Mode cleaner lock planned Now

Crucial dates

Commissioning in detail

- July 2014: early commissioning of IMC
- Oct 2014: first minitower complete, finish commissioning INJ
- Early 2015: all mirrors installed in central building, lock PRMI
- Summer 2015: first end-mirror installed, 1-arm tests
- Fall 2015: full interferometer available, start locking in power-recycled configuration
- Early commissioning of complete interferometer, first science runs
- ??: Install signal-recycling mirror, auxiliary laser system, increase power
- Late commission towards full sensitivity

Summary

- Advanced Virgo goal: x10 sensitivity wrt Virgo
- Major change in all the Virgo hardware
- Progress in construction start pre-commissioning
- Now: mode-cleaner locked
- End of construction: fall 2015
- First lock in a power recycled 25 W configuration: end of 2015
- First scientific run with LIGO: 2016
- Increase of sensitivity post-2016, and data takings

